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Abstract – Bridge infrastructures are essential nodes in the transportation network. In earthquake-prone areas, 

seismic performance assessment of infrastructure is vital to identify, retrofit, reconstruct, or, if necessary, demolish the 

structural systems based on optimal decision-making processes. This research proposes the combined use of advanced 

tools used in the management and monitoring of bridges such as Geographical Information Systems (GIS) and 

Structural Health Monitoring (SHM) in a synergistic manner that can enable observation of bridges to construct an 

earthquake damage model. Post-earthquake disaster data can enhance and update this model to mitigate further 

damages both to the structure and transportation network in the future. Implications of new technologies such as 

drones and mobile devices in this scheme constitute the next step toward the future of the Cyber-Physical SHM systems. 

The proposed intelligent and sustainable cloud-based framework of SHM-GIS in this paper lays the core behind more 

robust impending systems. The synergistic behavior of the offered framework reduces the overall cost in large scale 

implementation and increases the accuracy of the results leading to a decision-making platform easing the management 

of bridges. 

1. INTRODUCTION 

Earthquake as a natural disaster can effectively bring parts or all the transportation network systems, 

especially in metropolitan areas, to an immediate halt. Underestimating the seismic risks in bridges, one of the 

essential components of transportation infrastructures, would bring chaos and disorder to the disaster areas. 

Bridges assist in transporting goods and disaster victims to and from cities and disaster sites. They are one of the 

elements in search and rescue in post-earthquake operations. Therefore, without proper analysis and assessment 

of the risk in bridges could undoubtedly cause disruptions to the transportation network and, ultimately, failure of 

the urban areas. This paper investigates the use of Structural Health Monitoring (SHM) and Geographical 

Information Systems (GIS) tools for mitigating the impacts of earthquake disasters on bridges at the response and 

recovery stages. What is more, it introduces a cloud-based framework which proposes the combined use of SHM-

GIS as a tool to assess bridges and network systems in an improved and efficient manner compared to separate 

use of these items. 

The efforts on the analysis of past events have considerably improved the resiliency of bridges to earthquakes, 

but there are still cases where they fail (Little, 2002). Moreover, bridges are considered spatially dispersed and 

interconnected structures. They are interdependent from each other; therefore, analyzing one bridge under seismic 

assessment would not necessarily provide enough information to propose suggestions and alternatives for the 

mitigation of future earthquakes. Moreover, although the current tools in the literature cover the basic 
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requirements for bridge management mostly in a local manner, network-level assessment and decision-making 

platforms are still limited except few benchmark examples []. 

SHM is a monitoring technology that can detect damage and inspect the overall performance of structures, 

ideally in real-time and in a continuous manner (Chang, 1998). Coupling SHM with forecast system performance, 

also known as Damage Prognosis (DP), can enable behavioral predictions to estimate the useful renaming time of 

the structures under future loads (Farrar and Lieven, 2007). Typically, SHM systems consist of arrays of sensors 

deployed on strategic locations on bridges that can collect critical spatial information such as vibrations, 

displacement, etc. As discussed earlier, the need for assessing multiple bridges on the network is essential to 

produce effective countermeasures, however, collocated inclusion of multiple bridge monitoring systems and their 

effect on transportation network will result in a considerable amount of data that is hard to capture, analyze and 

manage. This is where GIS comes into the picture.  

GIS and its core functionality, i.e., organizing information in a standard graphical view (Tomaszewski, 2014) 

can aid SHM to represent better and manage the captured data. Therefore, a synergistic combination of the two 

systems can provide a decision-making platform to better decide on the suggestions and alternatives in disaster 

management and mitigation. GIS is the perfect platform when trying to analyze and show the impact of the failure 

of bridges on the transportation network in terms of functionality loss such as traffic delays and lack of 

connectivity, and economic loss in terms of local and regional level. 

The new paradigm shift in the Internet of Things (IoT) has led to many new innovative use-cases of SHM. 

One of the examples is the utilization of drones for monitoring critical infrastructure. Drones or Unmanned Aerial 

Vehicle (UAV) with its existing hardware, such as digital cameras, motion sensors, and communication units can 

already contribute to SHM applications with minimal effort. Installing custom sensors such as vibration-based 

non-destructive testing (NDE) method can be useful for damage detection situations such as identifying damage 

in small and unreachable areas. Similar principles apply to mobile devices due to their multisensory environment 

and advanced computer skills (Alavi and Buttlar, 2019; Ozer, 2016). Such new innovative technology is 

considered as part of the shift toward cyber-physical SHM system (Ozer and Feng, 2019). Structures as the 

physical objects, cloud-based real-time engineering computation as the cyber objects, and the sensors as the 

connecting medium presents a modern infrastructure assessment and management scheme. 

The paper presents background and necessary information about SHM and GIS in Section 1.  Section 2 and 

Section 3 address standalone applications of each of the tools throughout the literature, respectively. Section 4 

introduces the intelligent and sustainable cloud-based SHM-GIS framework for risk assessment of bridges in 

earthquake-prone locations. Machine learning as a complementary addition to SHM and GIS is explained in 

Section 5. Mobile device applications are still limited; therefore, drone-based SHM implications in the context 

associate Section 6. Finally, Section 7 concludes and highlights the future initiatives.  

2. OVERVIEW OF THE TOOLS 

This section discusses an overview of the SHM and GIS and their combined use in seismic performance 

assessment of the bridges. Although SHM systems mainly circle civil/mechanical/aerospace infrastructures, GIS 

has a vast list of applications and is an integral component of decision making in many disciplines (Chrisman, 

1999). 



2.1. Structural Health Monitoring (SHM) 

Non-destructive testing (NDE) for damage detection or identification through a series of sensors (either 

stationary or mobile) placed on a structure refers to as SHM. A vertical hierarchy is typically considered in order 

to identify damages.  A pioneered damage typology scheme was offered by Rytter (Rytter, 1993). Damage state 

was categorized in 4 levels, namely: 

1. Existence of damage – Detection 

2. Position of damage – Location  

3. Severity of damage – Extent 

4. Prognosis of damage – Prediction  

In such a hierarchy, knowledge of the previous level is required for complete damage identification. This 

means that the success at each level depends on how well the lower levels perform. Damage could relate to any 

changes in the structural behavior of a structure that can change its current or future performance. By definition, 

change refers to a baseline that makes damaged and intact states comparative (Farrar and Worden, 2007). Many 

works have reviewed SHM applications in variety of disciplines such as (Arcadius Tokognon et al., 2017; Feng 

and Feng, 2018; Sony et al., 2019). The 4-stage damage identification is the center of every SHM application. As 

shown in Figure 1, the SHM comprises of many other elements and features.  

In SHM paradigm, we first need to answer the following questions and carry out the procedures defined 

below (Farrar et al., 2001): 

1. Why there is a need to evaluate damages and damage description? (Operational evaluation) 

2. Which quantities need to be selected and measured, which type of sensors are required, and how often 

the data should be collected? (Data acquisition) 

3. Extracting low-dimensional feature vectors and excluding redundant information in addition to data 

condensation. (Feature selection) 

4. Verifying the significance of the extracted feature using statistical analysis. (Statistical model 

development (Feature discrimination) 

 

Figure 1: SHM Domain 



Conventional sensors used in SHM are accelerometers, strain gauges, corrosion sensors, fiber optic sensors 

(Noel et al., 2017), camera image/video processing (Yang et al., 2017), and many more. Deployment of these 

sensors requires one to determine the best optimal locations along the span or piers of a bridge since measuring, 

for instance, and vibration needs multiple placements of accelerometers to start the modal analysis of the bridge. 

Many algorithms could be employed in optimal sensor placement (OSP) techniques to identify these critical 

locations. Genetic algorithm for OSP of a long-span railway steel bridge in (Deshan Shan et al., 2011) and, 

modified variance (MV) method in (Chang Minwoo and Pakzad Shamim N., 2014) for Northampton Street and 

Golden Gate Bridge are among many of the examples in OSP studies. In addition to these, environmental factors 

such as weather conditions and fluctuations in temperature should also be taken into account as some sensors may 

have limitations under harsh conditions (Sohn et al., 2003). A wireless sensor network (WSN) based SHM system 

architecture is shown in Figure 2.  

 

Figure 2: SHM system architecture 

2.2. Geographical Information Systems (GIS)  

GIS constitutes many aspects, as shown in Figure 3. A visually explanatory platform involving GIS manages 

multiple data from different sources on separate layers allowing simulation and modeling of all data and their 

influence on one another. GIS and its useful applications in many disciplines, especially in disaster management 

cases, comprise of shortcomings. The time, effort, and possibly money that is essential for advanced GIS may 

deter usage of the tool completely. Applicability constraints clearly can be seen when analyzing earthquake 

disasters and its implication on the network, which could produce tens of thousands of spatially – possibility not 

uniformly distributed data that can make the processing and analyzing, a complicated and time-consuming process 

(Tomaszewski, 2014).  



 

Figure 3: Component of GIS, adapted from Tomaszewski (2014, p. 75) 

GIS maps with different layers are available online 1 ; however, the currency of the information provided may 

be of concern. Therefore, in some cases where there is a lack of information on the GIS maps (e.g., unknown 

bridge locations or highway network information), one needs to spend hours to acquire these data and import them 

into the correct location on the maps. 

3. BRIDGES PERFORMANCE ASSESSMENT  

The subsequent sections review SHM and GIS applications for bridge management and monitoring. Both 

tools are discussed considering the features they possess solely based on their system architecture. In addition to 

standalone applications, a brief review of SHM-GIS applications is also presented.       

3.1. Bridges Performance Assessment Using SHM  

Accelerometers are widely used sensors in SHM systems due to their low cost and easy installation, as well 

as their easy integration with other methods such as GPS for better accuracy in inverse structural dynamics. Meng, 

Dodson, & Roberts (2007) introduced their GPS-triaxial accelerometers approach for the structural response of 

the Wilford Bridge in Nottingham. Another similar study on a pedestrian bridge was conducted by Moschas & 

Stiros (2011). In both studies, time synchronization between GPS and accelerometers and the problem of different 

sampling rates of the systems which require sophisticated filtering techniques are some of the matters that need 

consideration in future studies. Other than using individual sensors deployed over a bridge, with the advent of 

smartphones, one can use the said devices to acquire vibration data from citizens’ smartphones in the paradigm 

of crowdsourcing applications (Ozer and Feng, 2017, 2016).  

As with the development in technology and an increase in the complexity of human-made civil structures, 

there is a need for a more efficient and long-term solution for some of the conventional sensors used in today’s 

SHM applications (Casas and Cruz, 2003). Optical fiber sensors (OFS) provides improved quality of data 

acquisition, reliability, easy installation, and lower lifetime cost (Lopez-Higuera et al., 2011). The fidelity of OFSs 

in large and critical SHM systems often prevails over the high initial investment costs. 

Another recent advancement in the SHM application is the use of digital video cameras with computer vision 

algorithms to identify displacement and vibration values. Specifically, in inaccessible locations on bridges, a 

                                                           

1 Natural Earth Data, Esri Open Data, USGS Earth Explorer, OpenStreetMap 



contact-less vision approach is proven to be active and flexible in extracting information than other methods (Feng 

and Feng, 2017). In (Ye et al., 2013), charge-coupled device (CCD) digital camera with extended zoom up to 

100m was performance-checked on Tsing Ma bridge and the results were compared to MTS2 810 material testing 

system. In another research (Khuc and Catbas, 2017) displacement of a bridge was tested in a non-contact vision 

approach and the difference in the results was less than 5% from using conventional sensors   

3.2. Bridges Performance Assessment Using GIS  

GIS, as explained earlier, can be considered as a database management system capable of storing, analyzing, 

and displaying such data in a standard graphical interface. In the area of bridge performance assessment, 

standalone applications of GIS mostly concentrate on risk assessment and life-cycle risk analysis. Spatially 

distributed information along with multiple independent parameters of bridges and networks, call for a 

management system that could operate and analyze under different scenarios. Integrating bridge inventory 

information with earthquake parameters required to produce fragility curves to determine bridge damage state as 

the input parameter for initializing spatial analysis is widely used in many studies. In a seismic risk assessment 

(SRA) based methodology for the Shelby County, Tennessee (Werner et al., 2000), 384 bridges in the network 

were assessed from multiple pre-generated earthquake models. Then, the traffic delay output was utilized to 

estimate the economic loss of the highway system. In the study done in St. Louis metropolitan area (Enke et al., 

2008), ArcView was used as a spatial tool for mapping, locating, and setting up earthquake scenarios to evaluate 

the indirect economic loss, which was more significant than direct loss. Cheng, Wu, Chen, & Weng (2009) 

introduced a bridge repair/rehabilitation decision-making model where ArcGIS was used to identify alternative 

routes where detours were placed to reroute traffic. Later the economic loss model including the rehabilitation 

cost as well as additional costs through redirecting traffic was constructed. The decision-making model at the end 

offered either the lowest cost or the shortest duration of repair.  

Another use of GIS is in the life-cycle assessment (LCA) of bridges. Deterioration of bridges over their 

lifetime and external attributes such as environment and traffic can influence the service life. In their research 

(Babanajad et al., 2018), they introduced an LCA framework for the U.S. Bridge Inventory, rating the inventory 

as a whole. Their Long-Term Bridge Performance Portal (LTBP) incorporated GIS and Google Maps to query 

multiple information. An overview of the bridge management system using GIS refers to Figure 4. 
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Figure 4: GIS system design for bridge management 

3.3. Bridges Performance Assessment Using SHM-GIS  

Combining the above-said tools into one network, it provides not only the capabilities of the instruments 

alone but also extra useful features that would not have been attainable otherwise. In the study by (Jeong et al., 

2017), a cloud-based cyberinfrastructure framework was presented. Apache Cassandra open-source as a column-

oriented database and Microsoft Azure was used for the database management system and cloud provider, 

respectively. The web user interfaces for data extraction and information visualization on Google Maps was also 

provided.  The Long-Term Bridge Performance (LTBP) Program3 , as also briefly mentioned in the previous 

section, is an initiative by the Highway Administration (FHWA) in 2008 envisioning a 20-year comprehensive 

field data collection from a sample of bridges in the U.S (Parvardeh et al., 2016). The program consists of 

analyzing bridge performance under deterioration. As previously discussed, the field data are gathered and 

maintained from different NDT techniques. The web-based platform containing the National Bridge Inventory 

(NVI) with GIS capability can enhance the quality of management of bridges by bridge owners as well as 

researchers to better understand the performance of bridges. A conceptualized GIS-based structural health 

monitoring was proposed in (Shi et al., 2002). SQL Server database and Maptitude GIS were used to input and 

store bridge and sensor data and to visualize in an interface to view and extract the bridge/sensor information. 

Table 1 Summarizes the above information and compares different features of bridge damage for risk assessment.  
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Table 1: Comparison of Different Bridge Assessment Techniques 

Application 
Sensor(s) 

requirement 

Structural 

Damage 

Assessment 

Database 

Management 

Spatial 

Analysis 

Decision 

Making 

Feature 

Risk 

Assessment 

Feature 

Scalability Cost 

GIS ✕ ✕ ✓ ✓ ✓* ✓* Low Low 

SHM ✓ ✓ ✕ ✕ ✓* ✓* Medium Medium 

SHM-GIS ✓ ✓ ✓ ✓ ✓ ✓ High Medium 

✓* indicates in limited scenarios given the use-case of the application 

4. INTELLIGENT SHM-GIS CLOUD-BASED BRIDGE MONITORING SYSTEM 

In this section, an intelligent SHM-GIS cloud-based framework is introduced and discussed. Individually 

deployed GIS and SHM tools discussed above may have their benefits in bridge monitoring, specifically for small 

scale applications. However, in large scale deployments considering the size and the complexity of the application, 

it may result in higher overall cost and less accurate results. It is, therefore, recommended that combined use of 

the tools on a cloud-based platform could enhance their performance.  Furthermore, cloud-based platforms allow 

collaboration of different stakeholders enabling each party to add, edit on top of the existing data, and performing 

simultaneous analysis.  

The nature of SHM systems in terms of sustainability already considers the three components of a sustainable 

approach, i.e., economic, social, and environmental. These include a reduction in traffic delays and downtimes, 

which subsequently lead to lower carbon dioxide emission and, lastly, the expected economic loss. These are 

mainly related to the network aspect, but the same can be said to the structure itself, i.e., bridge. Bridge monitoring 

can provide useful information in terms of the remaining helpful time and any maintenance that may be necessary 

for the future, which can help minimize the costs and maximums the life expectancy by early retrofitting or 

reconstructing.  

Similarly, GIS can help bridge managers to have a better understanding of the structures and their behavior 

under different conditions. GIS can deliver a decision-making platform (Băneş et al., 2010) for the risk assessment 

of bridges and their cascading failures on the network, thus offering a complete management tool that could 

provide sets of strategies depending on the application use. 

The new paradigm shift to cloud computing and web-based applications marks the SHM-GIS cloud-based 

platform a necessity in today’s technological world. Not only it provides the core functionality of the tools, but 

instead, it goes further to expand its roots for even more cost-effective, efficient, and sustainable solution in bridge 

prognosis and diagnosis. Synergistic use of SHM and GIS can develop or update earthquake models on the fly 

and provide a more accurate damage estimate of the bridge and its effect on the network.      

 



 

Figure 5: Framework of the system architecture 

The proposed SHM-GIS cloud-based system architecture is, therefore, presented in Figure 4. The sensory 

subsystem layer acts as the data acquisition where it collects the data from bridges. The collected information is 

then transferred to a server via a different form of communication standards such as Wi-Fi, Bluetooth, cellular, 

etc. and later uploaded on the cloud. Due to the enormous size of the acquired data for any given time history 

chiefly in the extensive application of bridge monitoring, storage methods need investigation. The issue of big 

data and the problem of storage has led to the creation of different file structure format. Standard file formats for 

storing large amounts of data are 1) HDF4 (Hierarchical Data Format), 2) netCDF5 (Network Common Data 

Format). However, due to the file structure of these formats, they are not ideal in cloud computing. Many 

alternatives with their strengths and weaknesses are present in Matthew Rocklin (2018) webpage. HDF5 

(Hierarchical Data Format version 5) can be an ideal solution in this case for storing multi-dimensional data. 

Bridge information such as geometry, location, etc. as well as network description such as highway information, 

traffic information, etc. are stored in an object-relational database management system (ORDBMS). PostgreSQL, 

with the extension, PostGIS for handling spatial data, is the common Database Management System (DBMS) for 

                                                           

4 http://www.hdfgroup.org/  

5 https://www.unidata.ucar.edu/software/netcdf/  

http://www.hdfgroup.org/
https://www.unidata.ucar.edu/software/netcdf/


structural health monitoring applications. PostgreSQL is an open-source DBMS that is well developed and 

intuitive. The relationship between the sensor data and the structural/network elements is also a one-to-many 

relation. 

The cloud service for this system relies on infrastructure as a service (IaaS) type. IaaS services are often low-

cost, more accessible and faster options over different cloud services enabling storage resiliency, frequent backup, 

high level of automation. Deciding which cloud provider to use depends on the performance and uptime required 

from the provider. A typical solution for cloud computing is Google Cloud and Compute Engine. Other services, 

such as Microsoft Azure and Amazon Web Services (AWS), are also available. These data then proceeds into 

performance analysis and monitoring of the bridges. Depending on the data type (vibration, displacement, image, 

etc.), different algorithms can define the damage state in the given earthquake scenario. 

 Incorporating the network data such as traffic delay and routing info into the database can enable the 

employment of a cloud GIS platform capable of visualizing, analyzing, managing, and monitoring bridges and 

the effects of failure of them on the transportation network. Using this information and a simple risk formula that 

includes direct costs such as structural loss, network loss, and indirect loss, it can provide a decision-making 

platform for pre- and post-earthquake disaster scenarios. The advantages of this SHM-GIS cloud-based system 

are as follows:  

 Utilizing open-source and free software and system providers   

 Ability to add/remove or change any information without the problem of proof checking for errors, 

 The flexibility of the system in any application use (using a small or large number of sensors),  

 An intuitive and low-cost solution for bridge monitoring (especially for bridges owners),  

 The scalability of the system in terms of the location and the size of the application.   

Moreover, risk assessment based on dynamic changes in the model can also serve in the system. As 

parameters of the model change throughout time, real-time risk assessment can assess the performance of the 

bridge under future loads. The data from traffic and future loading can predict the future state of the bridge, aiding 

bridge owners to decide about retrofitting or reconstructing all or some parts of bridge elements.  

The whole system, from the data acquisition, DBMS, and user interface, can be programmed with the open-

source Python programming language. Web applications, as well as mobile applications for viewing and 

extracting information, can also be implemented for easier and faster utilization of the data. The ability of 

information exchange and information sharing with other software and services is another advantage that 

distinguishes this from other similar systems (Ellenberg et al., 2015; Eschmann et al., 2012; Sankarasrinivasan et 

al., 2015).  A summary of the traditional SHM-GIS damage assessment and the cloud-based variant that is 

tabulated in Table 2. The next section brings a recent technological implementation, aerial devices, which provide 

an efficient synthesis of GIS and SHM domains. 

 

 

 

 

 



Table 2: Summary of the Traditional and New Novel SHM System 

5. MACHINE LEARNING IN SHM APPLICATION, A COMPLEMENTARY ADDITION 

Given the amount of data gathered from many different things, it is important to understand the pattern that 

underlines it. Day by day with increase in complexity of structures, without automatic (sometimes semiautomatic) 

processes to discover patterns using computer, such tasks would be infeasible and impractical. Machine Learning 

(ML) is considered as tool to recognize/classify information based on a learned pattern through the use of different 

algorithms. In general, ML algorithms are based on either 1) statistical, 2) neural or 3) synthetic approaches. The 

first two approaches are generally considered as the main pattern classifiers for SHM [8]. There are many works 

utilizing ML. For example, (Cao et al., 2018) developed a piezoelectric impedance measurement for an effective 

structural damage identification through an inverse analysis. Similarly (Moore et al., 2012) crack identification in 

a thin plate was achieved by model updating. 

With the advent of ML and statistical pattern recognition algorithms, a new level can be added to the Rytter 

(Rytter, 1993) 4-stage damage identification. Type of damage or classification of damage is the level that is 

possible through the use of ML algorithms. This new step lies between step 2 and step 3 introduced by Ryteer. To 

illustrates this, Figure 6 depicts the 5-stage damage identification in SHM application given the domain and level 

of difficulty. 

 

Figure 6: 5-Stage damage identification 

Reference System 
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processing 
Flexibility 
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Mobility 
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and 

Management 

Open and 

interoperable 
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Decision 

making 

(Jeong et 

al., 2017; 

Shi et al., 

2002) 

Conventional 

SHM-GIS 
✕ Low Medium Low Low ✕ ✕ 

This Study 

Framework 

Cloud-Based 

SHM-GIS 
✓ High High High Medium ✓ ✓ 



 Given that both damage and undamaged information are available, a supervised learning algorithm can 

effectively go through all 5 levels of damage detection. This requires many data to be readily available from the 

sensing systems or the physical-based models and the experiments. This is not possible in many applications and 

the current information for damage sate is limited, if not, unavailable. For such situations, there exists a method 

called unsupervised learning. In this mode, instead of learning the models and train based on the data, a rather 

simple approach, novelty or outlier detection is applied [10].  

 illustrates a statistical pattern recognition model for a typical damage assessment scenario utilizing ML. 

Moreover, Table shows the current reviews on ML utilization on SHM application.  

 

Table 3: Works on ML utilization in SHM 

 

ML can augment SHM in many aspects which the old system is incapable of. For example, environmental 

and operational variabilities often times are not considered but have proven that can greatly influence in-service 

structures (Sohn, 2007). Including these effects by leveraging the power of ML can definitely help SHM 

application achieve better level of detection. Moreover, ML and deep learning can be particularly useful in bridge 

monitoring applications which are combined with GIS and remote sensing tools that utilize machine vision for 

anomaly detection or as tools in data analytics inside the GIS package. 

Reference Model-based Data-Based 
Application of 

ML/Deep Learning 

Mobile 

Applications 

Machine Vision 

Consideration 

Novel Applications (UAV, 

VR, AR, etc.) 

(Fan and Qiao, 

2010; Gomes et al., 

2019) 
✓ - ✓ - - - 

(Ye et al., 2016) - ✓ - - ✓ - 

(An et al., 2013) ✓* ✓* ✓* - - - 

(Moughty and 

Casas, 2017) 
✓* ✓ ✓* - - - 

(Kerle et al., 

2019) 
- - ✓ - - UAV Only 

✓* indicates a little information 

Reference Model-based Data-Based 
Application of 

ML/Deep Learning 

Mobile 

Applications 

Machine Vision 

Consideration 

Novel Applications (UAV, 

VR, AR, etc.) 

(Fan and Qiao, 

2010; Gomes et al., 

2019) 
✓ - ✓ - - - 

(Ye et al., 2016) - ✓ - - ✓ - 

(An et al., 2013) ✓* ✓* ✓* - - - 

(Moughty and 

Casas, 2017) 
✓* ✓ ✓* - - - 

(Kerle et al., 

2019) 
- - ✓ - - UAV Only 

✓* indicates a little information 

Figure 7: A Typical Machine learning model 



6. DRONE ASSISTED SHM, A SYNERGISTIC MEDIUM 

Drone technology, also known as Unmanned Aerial Vehicle (UAV), has seen a vast increase in usage in 

recent years due to the advantages they can offer and especially their deployment flexibility (Al-Turjman et al., 

2019). Given their versatility, low-cost as well as ease of deployment elements of a flying piece of technology, 

they are becoming more and more accretive (Al-Turjman et al., 2020). There are a limited number of studies 

focusing on drone-based SHM systems. Most of the works aim at the post-image processing of cracks (Ellenberg 

et al., 2015; Eschmann et al., 2012; Sankarasrinivasan et al., 2015).  

However, very few have focused on vibration-based SHM (Na and Baek, 2016), but with the advancement 

in machine learning and cloud computing, image processing on the fly augmented with innovative technologies 

is considered the next step in mobile SHM applications. Some works have already started extracting critical 

information from the drones (Hoskere et al., 2019) but majority of them rely on post-processing techniques. Using 

the framework introduced, with the total flexibility it offers, application of cloud computing can become a reality. 

With the GIS part of the framework, critical data points on the structure can be generated and regularly visited to 

detect any abnormal changes with respect to a baseline.  

Moreover, with the combined use of SHM-GIS in drone-based SHM applications, both on-fly and cloud 

processing of information can be achieved, and immediate results can be shown as a map. The other benefit that 

this system also offers is the well-regulated and controlled behavior. This in turn provides total control over how 

the system should be implemented for the most effective use of drones.     

7. CONCLUSION 

Bridges are indispensable to a transportation network. Earthquakes can damage bridges and effectively 

disrupt the transportation network. Structural Health Monitoring (SHM) and Geographical Information Systems 

(GIS) are some of the tools that can mitigate, understand, and manage these issues. In this paper, a cloud-based 

SHM-GIS framework targets bridge monitoring in earthquake-prone locations.  

SHM and GIS both have their advantages in the application of monitoring and management of bridges. 

However, by synergistically combining these tools, researchers and especially owners of bridges can utilize the 

mixed results to have a better understanding of bridge performance with a decision-making platform extension. 

The new paradigm shift to cloud computing has enabled us to offload both database and data computations to a 

cloud server. Cloud computing can increase productivity, speed, and security of data by doing so in a low-cost 

manner. By enabling this feature, we can utilize the power of the cloud to visualize, analyze, manage, and store 

multiple data from multiple bridges.  

Application of cloud GIS can help to envision what would happen under different earthquake scenarios and 

what would be direct and indirect losses of such an event. Besides, with the help of this system, damage prediction 

for future events such as an increase in traffic load or deterioration of bridges and the implications of it on the 

transportation network can be examined.  

The proposed framework uses free and open-source software and packages and can introduce a web or 

mobile-based application written in Python alone. With the help of the information exchange feature of the system, 

the beneficiaries can extract data and use them in other services or software with little to no modification. Also, 

this paper introduced machine learning as a complementary addition and the use of drones as a synergistic medium 



to SHM application that can be included in the proposed framework for the most effective implementation of 

prognosis and diagnosis of bridges and bridge monitoring in general.  

The concept provided in this paper, with its flexible and open-source items, can be considered as the next 

step towards the future of the cyber-physical system (CPS) with many new features as part of the IoT paradigm 

shift (Al-Turjman and Malekloo, 2019). The future of the risk assessment for transportation network lies within 

the cloud. What will ensue from such a movement towards this paradigm are the applications of deep learning, 

artificial intelligence, drones, virtual/augmented reality. These are a tiny droplet in the vast ocean of the next 

generation sensing and monitoring applications.  

As future work, the focus will be on the implementation and development of such a system in addition to 

including dynamic and real-time risk assessment procedures embedded into the system for further performance 

analysis.      
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