437 research outputs found

    The evolution of inverted magnetic fields through the inner heliosphere

    Get PDF
    Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood.Parker Solar Probe has recently observed rapid, AlfvĂ©nic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 AU, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3–1 AU being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend

    Revising on the run or studying on the sofa: prospective associations between physical activity, sedentary behaviour, and exam results in British adolescents.

    Get PDF
    BACKGROUND: We investigated prospective associations between physical activity/sedentary behaviour (PA/SED) and General Certificate of Secondary Education (GCSE) results in British adolescents. METHODS: Exposures were objective PA/SED and self-reported sedentary behaviours (screen (TV, Internet, Computer Games)/non-screen (homework, reading)) measured in 845 adolescents (14·5y ± 0·5y; 43·6 % male). GCSE results at 16y were obtained from national records. Associations between exposures and academic performance (total exam points) were assessed using multilevel mixed-effects linear regression adjusted for mood, BMI z-score, deprivation, sex, season and school; potential interactions were investigated. RESULTS: PA was not associated with academic performance. One-hour more accelerometer-assessed SED was associated with (ÎČ(95 % CI)) 6·9(1·5,12·4) more GCSE points. An extra hour of screen time was associated with 9.3(-14·3,-4·3) fewer points whereas an extra hour of non-screen time (reading/homework) was associated with 23·1(14·6,31·6) more points. Screen time was still associated with poorer scores after adjusting for objective PA/SED and reading/homework. CONCLUSIONS: An extra hour/day of screen time at 14·5y is approximately equivalent to two fewer GCSE grades (e.g., from B to D) at 16y. Strategies to achieve the right balance between screen and non-screen time may be important for improving academic performance. Concerns that encouraging more physical activity may result in decreased academic performance seem unfounded.The work of Kirsten Corder, Andrew J Atkin, and Esther M F van Sluijs was supported, wholly or in part, by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence (RES-590-28-0002). Funding from the British Heart Foundation, Department of Health, Economic and Social Research Council, Medical Research Council, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. The work of Kirsten Corder, Esther M F van Sluijs, Ulf Ekelund and Soren Brage was supported by the Medical Research Council (MC_UP_1001/2, MC_U106179473, MC_UU_12015/3). The ROOTS data collection was supported by a programme grant to Ian Goodyer 074296/Z/04/Z from the Wellcome Trust and by the Medical Research Council Epidemiology Unit. The funders had no role in preparation of this manuscript. We thank Rebekah Steele and Charlotte Ridgway for assistance during data collection, and Kate Westgate and Stefanie Mayle from the physical activity technical team, and Paul Collings from the Physical Activity Programme, at the MRC Epidemiology Unit for their assistance in processing Actiheart data.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12966-015-0269-

    Strongly lensed [O III] emitters at Cosmic Noon with Roman: Characterizing extreme emission line galaxies on star cluster complex scales (100 pc)

    Full text link
    Extreme emission line galaxies (EELGs) are considered the primary contributor to cosmic reionization and are valuable laboratories to study the astrophysics of massive stars. It is strongly expected that Roman's High Latitude Wide Area Survey (HLWAS) will find many strongly gravitationally lensed [O III] emitters at Cosmic Noon (1 < z < 2.8). Roman imaging and grism spectroscopy alone will simultaneously confirm these strong lens systems and probe their interstellar medium (ISM) and stellar properties on small scales (â‰Č\lesssim 100 pc). Moreover, these observations will synergize with ground-based and space-based follow-up observations of the discovered lensed [O III] emitters in multi-wavelength analyses of their properties (e.g., massive stars and possible escape of ionizing radiation), spatially resolved on the scales of individual star cluster complexes. Only Roman can uniquely sample a large number of lensed [O III] emitters to study the small scale (~ 100 pc) ISM and stellar properties of these extreme emission line galaxies, detailing the key physics of massive stars and the ISM that govern cosmic reionization.Comment: Submitted in response to the call for Roman Telescope CCS white paper

    Improving solar wind forecasting using data assimilation

    Get PDF
    Data Assimilation (DA) has enabled huge improvements in the skill of terrestrial operational weather forecasting. In this study, we use a variational DA scheme with a computationally efficient solar wind model and in situ observations from STEREO-A, STEREO-B and ACE. This scheme enables solar-wind observations far from the Sun, such as at 1 AU, to update and improve the inner boundary conditions of the solar wind model (at 3030 solar radii). In this way, observational information can be used to improve estimates of the near-Earth solar wind, even when the observations are not directly downstream of the Earth. This allows improved initial conditions of the solar wind to be passed into forecasting models. To this effect, we employ the HUXt solar wind model to produce 27-day forecasts of the solar wind during the operational lifetime of STEREO-B (01 November 2007 - 30 September 2014). In near-Earth space, we compare the accuracy of these DA forecasts with both non-DA forecasts and simple corotation of STEREO-B observations. We find that 2727-day root mean-square error (RMSE) for STEREO-B corotation and DA forecasts are comparable and both are significantly lower than non-DA forecasts. However, the DA forecast is shown to improve solar wind forecasts when STEREO-B's latitude is offset from Earth, which is an issue for corotation forecasts. And the DA scheme enables the representation of the solar wind in the whole model domain between the Sun and the Earth to be improved, which will enable improved forecasting of CME arrival time and speed

    Orion Crew Module Aerodynamic Testing

    Get PDF
    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects
    • 

    corecore