1,347 research outputs found
Double and triple calix[4]arenis connected via the oxygen functions
New macrocyclic molecules are described containing two or three p-tert-butylcalix[4]arene subunits connected via their oxygen atoms. These macrocycles are available by two general methods which are capable of producing assemblies with bridges of varying rigidity and length
Robust Machine Learning Applied to Astronomical Datasets I: Star-Galaxy Classification of the SDSS DR3 Using Decision Trees
We provide classifications for all 143 million non-repeat photometric objects
in the Third Data Release of the Sloan Digital Sky Survey (SDSS) using decision
trees trained on 477,068 objects with SDSS spectroscopic data. We demonstrate
that these star/galaxy classifications are expected to be reliable for
approximately 22 million objects with r < ~20. The general machine learning
environment Data-to-Knowledge and supercomputing resources enabled extensive
investigation of the decision tree parameter space. This work presents the
first public release of objects classified in this way for an entire SDSS data
release. The objects are classified as either galaxy, star or nsng (neither
star nor galaxy), with an associated probability for each class. To demonstrate
how to effectively make use of these classifications, we perform several
important tests. First, we detail selection criteria within the probability
space defined by the three classes to extract samples of stars and galaxies to
a given completeness and efficiency. Second, we investigate the efficacy of the
classifications and the effect of extrapolating from the spectroscopic regime
by performing blind tests on objects in the SDSS, 2dF Galaxy Redshift and 2dF
QSO Redshift (2QZ) surveys. Given the photometric limits of our spectroscopic
training data, we effectively begin to extrapolate past our star-galaxy
training set at r ~ 18. By comparing the number counts of our training sample
with the classified sources, however, we find that our efficiencies appear to
remain robust to r ~ 20. As a result, we expect our classifications to be
accurate for 900,000 galaxies and 6.7 million stars, and remain robust via
extrapolation for a total of 8.0 million galaxies and 13.9 million stars.
[Abridged]Comment: 27 pages, 12 figures, to be published in ApJ, uses emulateapj.cl
Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism
Table S1. Demographic and clinical features of human subjects used in this study. Figure S1. Aβ deposition in microvessels in AD patients and APPSw/0 mice. Figure S2. Biochemical analysis of Aβ42 aggregates. Figure S3. Cy3-Aβ42 cellular uptake in wild type mouse brain slices within 30 min. Figure S4. Pericyte coverages in Lrp1lox/lox and Lrp1lox/lox; Cspg4-Cre mice. Figure S5.. LRP1 and apoE suppression with siRNA. (DOCX 1454 kb
Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading to Cerebral Aneurysm Pathogenesis.
OBJECTIVE: Cigarette smoke exposure (CSE) is a risk factor for cerebral aneurysm (CA) formation, but the molecular mechanisms are unclear. Although CSE is known to contribute to excess reactive oxygen species generation, the role of oxidative stress on vascular smooth muscle cell (VSMC) phenotypic modulation and pathogenesis of CAs is unknown. The goal of this study was to investigate whether CSE activates a NOX (NADPH oxidase)-dependent pathway leading to VSMC phenotypic modulation and CA formation and rupture.
APPROACH AND RESULTS: In cultured cerebral VSMCs, CSE increased expression of NOX1 and reactive oxygen species which preceded upregulation of proinflammatory/matrix remodeling genes (MCP-1, MMPs [matrix metalloproteinase], TNF-α, IL-1β, NF-κB, KLF4 [Kruppel-like factor 4]) and downregulation of contractile genes (SM-α-actin [smooth muscle α actin], SM-22α [smooth muscle 22α], SM-MHC [smooth muscle myosin heavy chain]) and myocardin. Inhibition of reactive oxygen species production and knockdown of NOX1 with siRNA or antisense decreased CSE-induced upregulation of NOX1 and inflammatory genes and downregulation of VSMC contractile genes and myocardin. p47phox-/- NOX knockout mice, or pretreatment with the NOX inhibitor, apocynin, significantly decreased CA formation and rupture compared with controls. NOX1 protein and mRNA expression were similar in p47phox-/- mice and those pretreated with apocynin but were elevated in unruptured and ruptured CAs. CSE increased CA formation and rupture, which was diminished with apocynin pretreatment. Similarly, NOX1 protein and mRNA and reactive oxygen species were elevated by CSE, and in unruptured and ruptured CAs.
CONCLUSIONS: CSE initiates oxidative stress-induced phenotypic modulation of VSMCs and CA formation and rupture. These molecular changes implicate oxidative stress in the pathogenesis of CAs and may provide a potential target for future therapeutic strategies
Anaerobic Digestion in a Flooded Densified Leachbed
A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost
Structural Characterization of Phosphatidyl-myo-Inositol Mannosides from Mycobacterium bovis Bacillus Calmette Gúerin by Multiple-Stage Quadrupole Ion-Trap Mass Spectrometry with Electrospray Ionization. II. Monoacyl- and Diacyl-PIMs
The multiple-stage ion-trap mass spectrometric approaches towards to the structural characterization of the monoacyl-PIM (triacylated PIM) and the diacyl-PIM (tetracylated PIM), namely, the PIM (diacylated PIM) consisting of one or two additional fatty acid substituents attached to the glycoside, respectively, were described. While the assignment and confirmation of the fatty acid substituents on the glycerol backbone can be easily achieved by the methods described in the previous article, the identity of the glycoside moiety and its acylation state can be determined by the observation of a prominent acylglycoside ion arising from cleavage of the diacylglycerol moiety ([M − H − diacylglycerol]−) in the MS2-spectra of monoacyl-PIM and diacyl-PIM. The distinction of the fatty acid substituents on the 2-O-mannoside (i.e., R3CO2H) from that on the inositol (i.e., R4CO2H) is based on the findings that the MS3-spectrum of [M − H − diacylglycerol]− contains a prominent ion arising from further loss of the fatty acid at the 2-O-mannoside (i.e., the [M − H − diacylglycerol − R3CO2H]− ion), while the ion arising from loss of the fatty acid substituent at the inositol (i.e., the [M − H − diacylglycerol − R4CO2H]− ion) is of low abundance. The fatty acyl moiety on the inositol can also be identified by the product-ion spectrum from MS4 of the [M − H − diacylglycerol − R3CO2H]− ion, which gives rise to a prominent ion corresponding to loss of R4CO2H. An [M − H − acylmannose]− ion was also observed in the MS2-spectra and, thus, the identity of the fatty acid substituent attached to 2-O-mannoside can be confirmed. The combined information obtained from the multiple-stage product-ion spectra from MS2, MS3, and MS4 permit the assignment of the complex structures of monoacyl-PIMs and diacyl-PIMs in a mixture isolated from M. bovis Bacillus Calmette Guérin
Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania
Hybrid genotypes have been repeatedly described among natural isolates of Leishmania, and the recovery of experimental hybrids from sand flies co-infected with different strains or species of Leishmania has formally demonstrated that members of the genus possess the machinery for genetic exchange. As neither gamete stages nor cell fusion events have been directly observed during parasite development in the vector, we have relied on a classical genetic analysis to determine if Leishmania has a true sexual cycle. Here, we used whole genome sequencing to follow the chromosomal inheritance patterns of experimental hybrids generated within and between different strains of L. major and L. infantum. We also generated and sequenced the first experimental hybrids in L. tropica. We found that in each case the parental somy and allele contributions matched the inheritance patterns expected under meiosis 97–99% of the time. The hybrids were equivalent to F1 progeny, heterozygous throughout most of the genome for the markers that were homozygous and different between the parents. Rare, non-Mendelian patterns of chromosomal inheritance were observed, including a gain or loss of somy, and loss of heterozygosity, that likely arose during meiosis or during mitotic divisions of the progeny clones in the fly or culture. While the interspecies hybrids appeared to be sterile, the intraspecies hybrids were able to produce backcross and outcross progeny. Analysis of 5 backcross and outcross progeny clones generated from an L. major F1 hybrid, as well as 17 progeny clones generated from backcrosses involving a natural hybrid of L. tropica, revealed genome wide patterns of recombination, demonstrating that classical crossing over occurs at meiosis, and allowed us to construct the first physical and genetic maps in Leishmania. Altogether, the findings provide strong evidence for meiosis-like sexual recombination in Leishmania, presenting clear opportunities for forward genetic analysis and positional cloning of important genes.</div
Seasonal Variation in Terrestrial Invertebrate Subsidies to Tropical Streams and Implications for the Feeding Ecology of Hart’s Rivulus (Anablepsoides hartii)
Terrestrial invertebrates are important subsidies to fish diets, though their seasonal dynamics and importance to tropical stream consumers are particularly understudied. In this year-round study of terrestrial invertebrate input to two Trinidadian headwater streams with different forest canopy densities, we sought to (a) measure the mass and composition of terrestrial inputs with fall-in traps to evaluate the influences of seasonality, canopy cover, and rainfall intensity, and; (b) compare terrestrial and benthic prey importance to Anablepsoides hartii(Hart’s Rivulus), the dominant invertivorous fish in these streams, by concurrently measuring benthic and drifting invertebrate standing stocks and the volume and composition of invertebrates in Rivulus guts throughout the year. The biomass of terrestrial invertebrate fall-in was 53% higher in the wet versus dry season; in particular, ant input was 320% higher. Ant biomass fall-in also increased with the density of canopy cover among sampling locations within both streams. Greater precipitation correlated with increased ant inputs to the more open-canopied stream and increased inputs of winged insects in the more closed canopy stream. Concurrently, the biomass of benthic invertebrates was reduced by more than half in the wet season in both streams. We detected no differences in the total volume of terrestrial prey in Rivulus diets between seasons, though ants were a greater proportion of their diet in the wet season. In contrast, benthic prey were nearly absent from Rivulus diets in the wet season in both streams. We conclude that terrestrial invertebrates are a substantial year-round prey subsidy for invertivores in tropical stream ecosystems like those we studied, which may contrast to most temperate streams where such terrestrial inputs are significantly reduced in the cold season. Interestingly, the strongest seasonal pattern in these tropical streams was observed in benthic invertebrate biomass which was greatly reduced and almost absent from Rivulus diets during the wet season. This pattern is essentially the inverse of the pattern observed in many temperate streams and highlights the need for additional studies in tropical ecosystems to better understand how spatial and temporal variation in terrestrial subsidies and benthic prey populations combine to influence consumer diets and the structure of tropical stream food webs
Recommended from our members
Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy
Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled
- …