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EXECUTIVE SUMMARY 

 

Enhanced Geothermal Systems (EGS) are designed to recover heat from the 

subsurface by mechanically creating fractures in subsurface rocks.  Understanding the 

life cycle of a fracture in a geothermal system is fundamental to the development of 

techniques for creating fractures. Recognizing the stage of a fracture, whether it is 

currently open and transmitting fluids; if it recently has closed; or if it is an ancient 

fracture would assist in targeting areas for further fracture stimulation.  Identifying dense 

fracture areas as well as large open fractures from small fracture systems will also assist 

in fracture stimulation selection. Geothermal systems are constantly generating 

fractures, and fluids and gases passing through rocks in these systems leave small fluid 

and gas samples trapped in healed microfractures.  Fluid inclusions trapped in minerals 

as the fractures heal are characteristic of the fluids that formed them, and this signature 

can be seen in fluid inclusion gas analysis.  Our hypothesis is that fractures over their life 

cycle have different chemical signatures that we can see in fluid inclusion gas analysis 

and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of 

fractures, along with an estimate of fracture size can be identified during the well drilling 

process. We have shown with this study that it is possible to identify fracture locations 

using FIS and that different fractures have different chemical signatures however that 

signature is somewhat dependent upon rock type.  Open, active fractures correlate with 

increase concentrations of CO2, N2, Ar, and to a lesser extent H2O.  These fractures 

would be targets for further enhancement. The usefulness of this method is that it is low 

cost alternative to current well logging techniques and can be done as a well is being 

drilled. 
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1.0 INTRODUCTION 
 

Enhanced geothermal systems (EGS) are engineered geothermal systems wherein a 

body of hot rock is fractured or “stimulated” through hydraulic, chemical and/or thermal 

processes.  The stimulation may occur in rock that has healed fractures, low fracture 

density, or no fractures.  The purpose of EGS is to create a large, interconnected body 

of rock that has sufficient fracture permeability for flow of hot fluids, creating a 

geothermal reservoir.    

 

Recognizing the stage of an existing fracture in a geothermal well: weather it is currently 

open and transmitting fluids; if it recently has closed; or is an ancient fracture would 

assist in targeting areas for fracture stimulation in creating an enhanced geothermal 

system.  Identifying dense fracture areas as well as large open fractures from small 

fracture systems would also assist in fracture stimulation selection. The hypothesis of 

this project is that fractures over their life cycle have different chemical signatures that 

can be identified using fluid inclusion gas analysis and by using the new method of fluid 

inclusion stratigraphy (FIS) the different stages of fractures along with an estimate of 

fracture size can be identified during the well drilling process.  

 

Locating fractures and accurately determining their relative “age” or degree of 

contribution to the current geothermal system is especially applicable to potential 

enhanced geothermal resources primed for artificial fracturing. Open and producing 

fractures and those only recently closed by mineralization are likely better candidates for 

localized EGS enhancement. Differentiating these fractures from those zones of 
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paleomineralization associated with an extinct geothermal event using FIS gas 

signatures is critical for such an application.  

Two working assumptions for this project are: 

1) Fractures can be identified by a high fluid inclusion density, therefore FIS 

analyses when plotted verses depth will show a peak at fracture locations. 

2) Fluids fluxing through fractures diffuse into wall rock through microfractures; 

therefore, fluid flowing in major fractures will affect enough rock to be 

detected in well cutting gas analysis. 

 

The project primarily involved logging three well cores from three different geothermal 

fields, obtaining FIS samples and comparing the results.   One issue of concern 

associated with FIS, in attempt to maintain the benefits of low cost and fast turn-over 

rates, is determining the minimum sample spacing required to accurately locate and 

characterize a significant fracture zone. Using fluid inclusion thermometry on several 

geothermal wells, we attempt to map the distribution of various fluid populations 

surrounding major fracture systems to determine the distal extent to which vein-hosted 

production fluids may be identified by FIS gas signatures.  In addition, we hope to verify 

the assumption that fluids trapped within matrix dominated well cuttings are 

representative of those both currently permeating the substrata and thus hosted within 

vein mineralization associated with major fractures. Fluids trapped within microfractures 

of primary matrix mineral phases and secondary replacement mineralization, namely 

within crystalline-hosted geothermal systems, suggest extensive overprinting by 

hydrothermal fluids (Moore, 1987).  

Specific goals for this project are: 

•To verify that peaks observed in FIS data are related to fractures. 
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•To determine which chemical species work best for identifying specific fracture 

types at each of several fields. 

• To verify that FIS can provide reliable information about fractures. 

•To optimize FIS sample intervals in order to minimize cost and maximize 

information obtained. 

•To verify that FIS can be used to target select areas in a borehole to create 

additional permeability through fracture stimulation. 

 

This method promises to lower the cost of geothermal energy production in several 

ways. Knowledge of productive fractures in the boreholes will allow engineers to 

optimize well production. This information can aid in well testing decisions, well 

completion strategies, and in resource calculations. It will assist in determining the areas 

for future fracture enhancement. This will develop into one of the techniques that are in 

the “tool bag” for creating and managing Enhanced Geothermal Systems. 

 

This project is funded by the Department of Energy (DOE), Enhanced Geothermal 

Systems Technology Development program.  The DOE award number is DE-FG36-

06GO16057. 

 

2.0 BACKGROUND 
 

Geothermal systems are constantly generating fractures (Moore, Morrow et al., 1987), 

and fluids and gases passing through rocks in these systems leave small fluid and gas 

samples trapped in healed microfractures.  Fluids deposit minerals within the open 

fractures and small amounts of the fluid can be trapped within the minerals as they grow 

creating fluid inclusions. The fluid inclusions trapped in the minerals as fractures are 
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filled are characteristic of the fluids that formed them, and the chemistry of those fluids is 

obtained by conducting gas analyses of fluid inclusions.  Fluid inclusion stratigraphy 

(FIS) uses gas analyses of fluid inclusions to determine fluid types (Hall 2002, Dilley et 

al., 2004; Dilley et al., 2005; Norman et al., 2005).   

 

Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry 

which applies the mass quantification of fluid inclusion gas data from drill cuttings and 

applying known gas ratios and compositions to determine depth profiles of fluid barriers 

in a modern geothermal system (Dilley et al., 2004; Norman et al., 2005). Identifying key 

gas signatures associated with fractures for isolating geothermal fluid production is the 

latest advancement in the application of FIS to geothermal systems (Dilley et al., 2005; 

Dilley and Norman, 2007).  

 

Modern zones of production are often defined by open, large-aperture fracturing and/or 

fracture swarms.  Production zones identified by temperature and geophysical logs have 

a fracture density of >5 fractures/30 ft. with apertures >20mm is common in production 

zones.  Production fracture fluid inclusion populations exhibit uniform salinities and 

trapping temperatures for both vein and wallrock minerals that correlate well with 

production fluids. Currently FIS data, sampled at 15-30 ft. intervals over production 

zones, typically exhibit anomalously high intensities, or peaks, for most gaseous 

inorganic species; N2, Ar, CO2 and He are commonly associated with large-aperture 

(>50mm) fractures and fracture swarms (Normal et al., 1997; Dilley et al., 2004; and 

Dilley et al., 2005). Nonproducing zones have similar fracture densities as productive 

fractures systems, but differ by having multiple fluid inclusion populations typically 

recording trapping temperatures 20-50°C above current temperature profiles, and 

smaller FIS gas peaks.  
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2.1 Geological Settings 
 
Understanding the rock stratigraphy of the geothermal system will assist in determining 

the applicability of FIS.  The three wells used in the study are Karaha-Telaga Bodas; 

Glass Mountain, and Steamboat Springs. 

 

Figure 1:  Map illustrating the 
distribution of volcanic features, 
thermal manifestations (Telaga Bodas, 
Kawah Saat, thermal springs (x’s), and 
Kawah Karaha), and geothermal wells 
(filled circles) at Karaha-Telaga 
Bodas. Contour lines show surface 
elevations (masl). Kawah Galunggung 
is the main vent of Galunggung 
Volcano. From Moore et al. (2002). 

Karaha-Telaga Bodas   
 
Karaha-Telaga Bodas (Karaha) is a vapor 

dominated geothermal system on the Island of 

Java in Indonesia (Nemcock et al., 2004).  The 

tectonics of this area is dominated by the 

subduction of the Australia Plate beneath the 

Eurasia Plate at the convergent margin of the 

Sunda arc (Lee and Lawver 1995).  Volcanoes 

of the arc include Kawah Galunggung, an 

active vent which is geologically similar to Mt. 

St. Helens.  Galunggung crater is horseshoe 

shaped, and is believed to have been shaped 

around 4200 years ago by massive slope 

failure (Katili and Sudradjat 1984).  The 

geothermal field follows a volcanic ridge that 

stretches between Kawah Galungung and  

Kawah Karaha (Figure 1).  Simple models of 

the gravity data of this field are consistent with 

a mushroom-shaped intrusion that extends to 
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fairly shallow depths beneath a thermal area at Telaga Bodas and extends for about 10 

km north as a thin sill underlying the bulk of the geothermal system.  Petrologic data 

supports that this intrusion is likely the heat source of the system (Tripp et al., 2002).  

 

The history of this system is considered to be relatively simple, as indicated by vein 

paragenesis (Moore et al. 2002).  An initial liquid-dominated stage began when magma 

intruded the base of the volcanic cone.  The geothermal system was capped by volcanic 

extrusives (lava and pyroclastic flows).  Altered pyroclastics beneath the topmost 

andesite flows absorbed the deformation and left the andesite flows only weakly 

fractured.  Many cycles of overpressuring resulted in tensile fractures in the system.  

Probably due to the catastrophic slope failure that formed Galunggung crater, the 

system experienced a sudden drop in fluid pressures that boiled the fluids of the system 

and resulted in the vapor dominated system encountered today.  Downward percolating 

condensate and meteoric waters resulted in progressive downward sealing of fractures 

that extended the depth of the cap rock.   Decreased pore pressure in the vapor zone 

caused collapse of fractures and left low perm abilities.  Present day fractures in the cap 

rock show an overall strike-slip stress regime.  Those in the reservoir show a normal-

fault stress regime (Nemcock et al., 2004). 

 

The present day system has been explored by drilling to depths of 1.86 miles.  The 

vapor dominated system overlies a deeper liquid reservoir and temperatures up to 660°F 

are measured.  A quartz diorite encountered at depth in drill holes is believed to be the 

intrusive supplying heat to the system (Moore et al., 2002).   Well T2 was advanced to a 

depth of 4,400 feet on the northern side of Telaga Bodas (Figure 2) in 1997.  The well 

was shallow and did not penetrate the magmatic vapor chimney but did below 3,000 feet 

(ft) encounter a vapor-dominated zone.  The well encountered a series of lithic tuffs and 
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andesitic tuffs.  Temperatures dramatically increased at approximately 2,200 ft. from 

below 200°F to slightly above 500°F.  

 

Figure 2:  North-south cross section through the geothermal system.  From Moore 
et al., (2002); Modified from Allis et al., (2000) and Tripp et al., (2002). 
 
 

Glass Mountain KGRA  
 

 

Figure 3:  Glass Mountain and Caldera area of Medicine Lake Volcano. 
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The Glass Mountain known Geothermal Resource Area (Glass Mtn.) is located on 

Medicine Lake Volcano in the Cascade Range of Northern California (Figure 3).  The 

Cascades are a convergent margin feature inland of the subduction of the Juan de Fuca 

Plate beneath the North American Plate.  Medicine Lake Volcano (MLV) is shield 

volcano just east of the main arc of the Cascades in a basin and range-style E-W 

extensional environment on the Modoc Plateau.  Regional N-S trending normal faults 

project under the volcano from the north and the south.  The northwestern extension of 

the Walker Lane fault system also coincides with MLV (Donnelly-Nolan 2002).  Volcanic 

activity at MLV seems to be strongly episodic, with the most recent episode ending 

about 900 years ago with the eruption of dacite and rhyolite at Glass Mountain and other 

east rim vents (Donnelly-Nolan 1990).  MLV is the largest volcano by volume in the 

Cascades, and earlier volcanic vents connect MLV with Mt. Shasta, about 50 km to the 

west-southwest.  Vent and fault alignments on MLV are generally N-S and rarely outside 

of 30 degrees of north.  Exceptions to this include the southwest flank where vents 

trending 55 degrees east of north are likely influenced by the vents between MLV and 

Mt. Shasta and the presumed crustal weakness in this location, and the vents near the 

caldera, which tend to be tangential to the rim.  Ground cracks are evident on the upper 

northwest flank and lower north, east and south flanks, oriented typically NNW to NNE 

but with east-west opening, consistent with the regional tectonic regime (Donnelly-Nolan 

1990). 
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Figure 4:  Fourmile Hill Geothermal project area within Glass Mountain KGRA (GHC 
Bulletin, Aug. 1996). 
 

Lavas range in composition from basalt through rhyolite.  Glass Mountain on the upper 

east flank of MLV is a rhyolite dome complex with rhyolite and dacite obsidian flows.  It is 

believed that MLV is made up of many small, differentiated magma bodies and a 

complex of mafic dikes from the periodic injection of basalt, which ultimately provides the 

volcano’s heat.  MLV is a dry area within the rain shadow of the Cascades, and springs 

of any temperature are rare.  One fumerolic area is present at a hot spot near Glass 

Mountain (Donnelly-Nolan 1990).  Figure 4 presents a location map and Figure 5 

presents a cross-section.  

 

Well 88-28 is composed of felsic volcanics overlying mafic lavas.  The well was 

advanced to a total depth of 8,000 ft. however core was available for only the top 3,600 

ft.  At approximately 1,200 ft. the lithology changes from mixed volcanics (altered 

basalts) to felsic volcanics.  The estimated static temperature increases rapidly from 

350°F at 1500 ft. to 400°F at 2800 ft. 
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Figure 5:  From Eichelberger (1981).  A north-south cross section through the center of the 
Medicine Lake Highland volcano with major features projected onto the profile. Vertical 
exaggeration of surface topography is 2X. Silicic magma chamber is shown at depth 
discussed in text and intermediate in size between the minimum case, a small body at 
intersection of cone sheet caldera fractures (Heiken, 1978) and the maximum possible 
extent marked by position of flanking mafic vents. 
 

Steamboat Springs  
 

Steamboat Springs (Steamboat) is located in the Humboldt zone of the Basin and Range 

in northern Nevada.  The Humboldt zone is a northeast-trending structural zone 

containing northeast-striking left-lateral and normal faults and northeast-trending folds.  

Several major geothermal fields lie in this zone (Faulds et al., 2002).  North and 

northeast striking faults in the Steamboat area likely provide conduits for fluid flow 

(Figure 6).  
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Figure 6:  Location and Geology of Steamboat Springs, Nevada (from White 
et al., 1992). 

 

The springs have been used and developed for purposes ranging from recreation to 

power since about 1860.  Springs are almost boiling.  One geothermal plant in the area 

produces power from an approximately 458°F reservoir in hydrothermally altered 

granodiorite and metamorphics located near a Cretaceous intrusive contact of the 

granodiorite.  Another set of wells taps fluids with a maximum temperature of about 

325°F (at about 1312 ft. depth) in fractured granodiorite along a north-northeast striking 

fault zone.  It is believed that this fluid may be the cooled outflow plume of the resource 

tapped by the other set of wells (Garside et al., 2002).     

 

Several 1.1 million year-old rhyolite domes occur in the area, another rhyolite intrusive 

may lie under the thermal area (White et al., 1964).  The area has been hydrothermally 

active, at least intermittently, for over 2.5 million years (Silberman et al., 1979).  There is 
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debate about whether the hydrothermal system is due to circulation of fluids in an 

extensional environment or due to heat from a magmatic intrusion at depth.  Both types 

of hydrothermal systems are present in the Basin and Range, and the extensional type 

system is nearly unique to this environment.  Support for an extensional heat 

mechanism comes from close proximity to an active range front fault.  Although there is 

no direct evidence for a magmatic system able to provide the needed heat, geochemical 

data supports this option, in a manner called “compelling” by the authors (Ahehart et al., 

2003).  The known rhyolite domes are too old to have provided this heat source, but 

younger intrusions may be buried.   

 

Well 87-29 was advanced to a depth of 3990 ft.  The matrix is composed of lahars, and a 

series of granodiorites.  Primary production is from 500 to 1200 ft. with temperatures 

above 300°F. 

3.0 METHODS 
 

Four cores from three different fields were logged and sampled:  two from Karaha, one 

each from Glass Mtn. and Steamboat geothermal fields. Well K-33 at Karaha was 

sampled at select intervals during the formulation of the proposal for this project.  Karaha 

in Indonesia is an active, single geothermal event at an active volcano.  Glass Mtn. in 

California is a single geothermal event system at the edge of the basin and range and 

more volcanic in nature than Steamboat Springs.  Steamboat in Nevada is a classic 

basin and range, geothermal system with multiple events. 

 

The cores were located at the Energy & Geoscience Institute in Salt Lake City, Utah. A 

continuous log of fractures, veins, fracture systems, and alterations was made for each 
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core. FIS samples were collected every 30 feet along the core and every 10 feet where 

there were fractures, veins, and fracture systems.  Select zones had FIS samples 

collected every one to two feet.  Samples were also collected for petrographic analysis 

and fluid inclusion thermometry.   

 

Approximately 550 FIS samples were collected from each core and submitted to Fluid 

Inclusion Technology (FIT) of Oklahoma for analysis.  FIT has a proprietary system for 

rapid bulk analysis of fluid inclusion gases.  A sample is crushed in a vacuum and the 

volatiles are analyzed with a quadropole mass spectrometer.  The raw data is in the form 

of an Excel spreadsheet with relative concentrations per mass peak from 2 to 180.  See 

Dilley et al., 2004 and Dilley, et al., 2005 for more on the FIS analysis process.   

 

The raw data was plotted using the standard format for FIS (Norman et al., 2005). The 

species of interest are the principal gaseous species in geothermal fluids and trace 

hydrocarbon species, which include H2, He, CH4, H2O, N2, H2S, Ar, CO2, C2H4, C2H6, 

C3H6, C3H8, C4H8, C4H10, benzene, and toluene.  Geothermal fluid inclusion mass spectra 

generally show major peaks at 2 (H2), 18 (H2O), 28 (N2) and 44 (CO2), with other mass 

spectra at lower values.  The peaks at high mass/electron values (above about 60) are 

typically heavier organic compounds. Intensities range up to 8 orders of magnitude.  

Figure 7 presents that mass spectra for one sample at a particular depth from a well at 

Coso geothermal field.   
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Figure 7:  Typical FIT mass spectra of fluid inclusions in drill chips from a particular depth. 
 

Due to the extensive amount of data (mass peaks from 2 to 180 for each of the over 

1500 samples), data processing is required and a tool is needed to display the data. 

Figure 7 would not be useful for plotting the data for interpretation for each well. FIT 

generates mudlog type graphs as seen in Figure 8 and provides a report with 

interpretations (Hall 2002).   

 

 

H2O   N2   CO2                     heavier organics        



Figure 8:  FIT’s mudlog type graph presentation of mass spectra. 
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In order for FIS analyses to be useful and economically applied to the geothermal 

industry an approach similar to FIT was adopted.  The Rockware® program Logger was 

selected for plotting the mass spectra because it was low cost, adequate for the job, and 

data files can be transferred into industry programs.  Logger produces graphic strip logs 

from user-created or imported data files.  The data files were created in Excel from the 

ASCII file supplied by FIT.  For each gas species a major gas peak that had little 

interference from other species were chosen.  For example for methane this is mass 15, 

not 16 (the weight of methane). The format of the logs can be designed by the user. For 

each well a mudlog displaying mass peaks of various compounds were plotted (Norman 

et al., 2005). For each species, the scaling of the graphic strip is set using as a 

maximum as the mean plus two times the standard deviation.    

 

On the mudlogs developed the species are grouped by chemical type, which are plotted 

in different colors. Helium and water are plotted in blue with water distinguished by a 

lighter blue color. The inorganic species N2, Ar, and CO2 are plotted in red.   The C2-C6 

straight chain organic species are plotted in red (C2H6, C3H6, C3H8, C4H8, C4H10); the 

sulfur species are plotted in orange; and organic aromatic peaks are plotted in gray.  

Sulfur species plotted are H2S (mass 34), SO2 (mass 48) and mass 64. Mass 64 is a 

major peak for SO2 and CS2, and it a minor fragment peak for some organic species. 

Hence mass 64 is distinguished by a different color than orange used for mass 34 and 

mass 48. Mass peaks 70, 78 and 92 are respectively the principal peaks for 

cyclopentane, benzene and toluene. Mass peak 50 is a common fragment peak for 

aromatic compounds. Quantitative analysis of fluid inclusion organic species shows 

concentrations are in the low ppm and ppb range (Norman et al., 2004).  
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Vein and vug material, and surrounding host rock associated with major fracture swarms 

for each well were sampled from various intervals for thermometric analysis of fluid 

inclusions and their fracture aperture measured. Thermometric analysis of secondary 

quartz and calcite-hosted fluid inclusions were compared with transparent mineral 

phases from the adjacent wallrock (≤2cm away) using a Linkam PR600 thermometric 

stage (Figure 9). Multiple Tm (ice, eutectic) and Th values were used to determine fluid 

populations for each fracture system. Core from Steamboat 87-29 was selected to 

characterize the distance and pervasiveness over which fracture-generated fluids effect 

hostrock fluid inclusions. Two major fracture intervals were isolated for study: 818 ft. 

(Region 1) representing a zone of major production and 1112 ft. (Region 2) representing 

a significant, yet cooler zone of production.  In addition to the central vein mineralization, 

surrounding matrix material was sampled at increasing spatial intervals from both central 

fractures: approximately 1/2, 4, 20 inches, and every 10 ft. to 100 ft. from the fracture.  

Core intervals containing fracture swarms were selected to analyze fluid inclusion 

homogeneity among dendritic extensions of the main fracture. Fracture frequency, 

aperture, and degree of mineralization were measured and noted in detail for both 

systems. 
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Figure 9:  Example of thick section of vein and hostrock: sampled from 226’ in Steamboat 
87-29 exhibiting grey quartz and milky white quartz in vein fracture, propylitic alteration, 
and strong siliceous alteration of matrix. 
 

The FIS and fluid inclusion thermometry were compared to the core logs developed. The 

core logs were plotted along the laboratory data collected in order to evaluate how the 

FIS samples correspond to the fractures observed.   

 

4.0 DATA 

This study began with select sampling of two wells from Karaha T2 and K33.  Six 

fracture zones were selected from the Karaha wells. The fracture zones consisted of 

calcite, quartz, pyrite, and a combination of the three mineral types. Figure 10 shows 

select results of mass spectra plotted against depth for Well K-33, with a fracture at 5458 

feet. It can be seen that H2O, CO2, and ratio of 43/39 all indicate sharp peaks at this 

location, with H2O having a broader peak. 
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Figure 10:  Graphs of various ratios for Karaha Well K-33. Note the peaks all correspond to 
location of vein at 5458 feet. 
 

Table 1 presents the type of mineral infilling a fracture and locations of peaks for select 

chemical species observed relative to the fracture.  Table 1 was compiled from the 

fracture zones studied for the two wells.  It can be seen that the peaks for a number of 

the chemical species and ratios of interest occur at fractures.  In the case of the altered 

zone, there were several distinct fractures and corresponding chemical species peaks.  

Pyrite filled fractures did not produce a peak in the concentrations of H2O, CO2, or 

propane/propene (43/39) ratio. 
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Table 1.  Select chemical species and their occurrence in the fluid inclusion gas chemistry 
in relation to the fracture. 

Mineral CH4 H2O N2 H2S Ar CO2 Gas/H2O N2/Ar CO2/CH4 43/39

Calcite X X X X X X X X X

Quartz X X X X X X X

Pyrite X X X X X

Calcite & Pyrite X X X X X X X X X

Quartz & Pyrite X X X X X X X X X

Altered X X X X X X X X

 

4.1 FIS Logs 
 

Figures 11 through 13 present the fluid inclusion stratigraphy (FIS) logs for each of the 

three main cores studied.  It can be seen on the FIS logs that at certain depths there are 

a series of peaks occurring in many of the chemical species.  For instance in Figure 11, 

the Karaha T2 log, at a depth of between 1900 and 1950 feet there are significant peaks 

in Ar, CO2, throughout the organic species except CH4, and in three of the aromatic 

species but not in H2O.  These series of peaks also occur at about 1300 ft, 1550 ft, 2450 

ft, 2900 ft, and 3225 ft.  Peak location varies between wells.  For Glass Mtn. 88-28 

(Figure 12) the peaks are observed at 800 ft, 1050 ft, 1200 ft, 1700 ft, 1850 ft, 2100 ft, 

and 3150 ft.  For Steamboat 87-29 (Figure 13) there is a series of peaks from about 400 

feet to 1100 feet and then again from 2850 feet to 3200 feet.  There are some areas in 

each log that have a series of peaks however the peaks do not occur in the majority of 

the species or in only the heavier organic species, such as in Steamboat Springs 87-29 

at 3500 ft.  Also peak thickness varies.  When this occurs throughout the species at the 

same depth the thickness may be due to the sampling interval.  For instance in Figure 

12, Glass Mtn. 88-28 at 2100 feet the thinness of the peak is due to the sampling interval 
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being only a few feet.  When it occurs with only a few species at a select depth, it is most 

likely due to the concentration of the chemical species, Figure 11 at 4450 ft. 

 

Figure 11:  FIS Log for Karaha Well T2. 
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Figure 12:  FIS Log for Glass Mtn. Well 88-28. 
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Figure 13:  FIS Log for Steamboat Well 87-29. 
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Figures 14 and 15 present the fracture log developed for Karaha T2 and Glass Mtn 88-

28.  These fracture logs were developed from logging of the core and from data provided 

by Joe Moore and Jeff Hulen of EGI.  For Steamboat the fracture log was developed by 

Jeff Hulen of EGI.  This fracture log is presented in Figure 16.  Each fracture log is 

plotted against the FIS log for each well.  These logs include fractures, veins and vugs 

which are referred herein collectively as fractures.   

 

In Figure 14, for Karaha T2 it can be seen that there are a series of veins, vugs, and 

fractures that are greater than about 3 mm located from about 1600 ft to about 2000 ft., 

at 2250 to 2750 ft.; at 3300 to 3400 ft.; and from 3600 to 4000 ft.  The FIS log correlates 

to the larger veins, vugs and fractures at 1900 ft and 2300 to 2500 ft.  The FIS log 

indicates a peak at 3250 ft. which is about 50 ft. above a large vein/vug at 3300 to 3400 

ft. This may be due in part to the sampling interval.  There is no correlation of the large 

fracture, vein/vug zone at 3600 to 4000 ft. with peaks on the FIS log. 

 

For Glass Mtn. Well 88-28 (Figure 15),  the fractures log correlates with peaks in the FIS 

log at 900 ft, 1200 ft, 1900 ft, 2100 ft, and to a lesser extent from 3150 to 3400 ft.  Most 

notable of the correlations is the peak at 2100 feet which the fracture log indicates to be 

a large vein.  There are several depths that indicate peaks on the FIS log that do not 

correspond to the fracture log such as at 800 and 1000 ft.   
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          Figure 14: Combine FIS Log and Fracture Log for Karaha Well T2.  Note Well T2 did not encounter a production zone but did    
encounter a vapor dominated zone below 3000 feet. 
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Figure 15:  Combine FIS Log and Fracture Log for Glass Mtn. Well 88-28. Note lack of correlation of FIS peaks and veins at 2900 to 3000 
feet and the significant vein at 2100 feet. 
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Figure 16:  FIS log and fracture log for Steamboat Springs Well 87-29.  Temperature survey indicates that the primary production zone 
occurs from about 500 to 1,200 feet.  Note the larger, broader peaks in all of the chemical species in this zone.  At 3000 feet and below 
several of the chemical species do not have sharp peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 16 presents the results of combining the FIS log with fracture, temperature, and 

general lithology information for Steamboat 87-29.  It can be seen that several of the 

peaks that occur in the FIS data corresponds to fracture openings.  Peaks at 250, 825, 

950, 1100, 3100, 3225, and 3700 ft. correspond to open fractures.   The deeper 

fractures are thinner and are cooler according to the temperature survey.  

 

There are broader less define peaks (some species not having peaks) on the FIS log 

that do not appear to correspond to open fractures such as 450, 600, 2200, 2650, and 

3800 ft.   In several of these zones, 2200, 2650, and 3800 ft., the CO2 and several of the 

heavier organic species appear to have low values.  The fractures below 3000 feet have 

peaks in a number of the organic compounds and aromatics but low values of H2O, CO2, 

N2, and Ar.  These fractures are not in the production zone.   

 

4.2 FLUID INCLUSION THERMOMETRY 
 
Salinity and temperatures of homogenization analyzed at various depths for the three 

wells (Figure 17) indicate that fluids from both veins and wall rock represent overlapping 

fluid populations. The broad salinities and trapping temperatures encountered, however, 

imply either heterogeneous trapping from mixed fluids, boiling or a long and varied 

hydrothermal history exhibiting fluid signatures from current as well as past fluids.   
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Figure 17:  Salinities (as a function of Tm(ice)) plotted against trapping temperature (as a 
function of Th) indicating populations of entrapped production fluids. Orange (vein) 
samples and blue (matrix) samples are represented in each population. 
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Some zones of hydrothermal mineralization do not comply well with matrix fluid 

entrapment (Figure 18). In the case of deeper, non-productive zones (Karaha T2 at 4344 

ft. and Steamboat 87-29 at 1130 ft.) distinctive populations recorded separately by both 

matrix and vein material are observed. However, the scope of FI thermometry in this 

investigation is limited. The standard deviation observed within some alteration zones 

with solely matrix-trapped fluids (Figure 19) indicate the same degree of deviation 

observed between vein and matrix inclusion as exemplified by Steamboat 87- 29:1130 ft. 

(Figure 18). In addition, leaking of fluids within friable vein mineralization is 

overwhelmingly encountered during the heating and freezing analyses of Glass Mt and 

Karaha samples, drastically limiting the number and size of inclusions which may be 

measured as well as the population count on those veins representing a higher 

homogenization temperature (Th>200ºC).  

 

Figure 18:  Vein (orange) and matrix (blue) inclusions representing separate fluid 
populations. 

 

Figure 19:  Spectrum of fluid compositions observed within single matrix phenocrysts, 
representing potential range of fluids trapped within host rock and standard deviation for 
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fluid inclusion thermometric measurements. Trapping temperature (C) is represent on the 
x-axis, weight percent equivalents NaCl represented on the y axis. 
 

Over a broad range of analyses, matrix or wall rock mineralization behaves similarly to 

vein material along fractures in its ability to trap production fluids for analysis by FIS. 

Friability and limited volume of vein material inhibit its usefulness as a major source of 

trapped fluids. 

 

5.0 INTERPRETATIONS 

Locations of fractures are identifiable on the FIS logs as peaks in the majority of 

chemical species as evident by the correlation in all three wells of the FIS peaks and the 

noted fractures, veins and vugs.   The peaks may also represent the variability in the 

precision of the measurements.  Based on studies conducted on FIS samples from Coso 

Geothermal Field and fluid inclusion standards precision is about 25 to 35 percent (Dilley 

2008).  The percent difference between minimum and maximum for these individual 

peaks ranges from 42 to 100 percent for the various species plotted, suggesting the 

peaks are from more than just precision of the measurements.    The FIS peaks readily 

correlate to veins/vugs in to a lesser degree to fractures which may be due to the infilling 

material in a vein having a greater density of fluid inclusions than the material 

surrounding an open fracture.   

 

From the limited study of the two wells at Karaha T2 and K33 (Figure 10 and Table 1) it 

seems not to matter whether the fracture filling material was calcite, quartz, pyrite, or 

some mixture of the minerals; there were several mass spectra with peaks that 

corresponded to the filled fractures. In the highly altered zones the peaks were much 
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broader suggesting infiltration of the various chemical species throughout the entire 

altered zone.   

 

5.1 CHEMISTRY OF FRACTURES  
 
Figure 20 presents a FIS log for Karaha T2 for H2O, total gas and fracture size.  Total 

gas is the summation of the concentrations of masses 1 through 180 subtracting H2O 

(mass 18).  Typically the predominate gaseous species is CO2.  Fracture size includes 

veins and vugs.  In this well are lithic tuffs, crystal tuffs, and andesites with veins of 

pyrite, calcite, and quartz.  The occurrence of H2O in fluid inclusion gases has been 

associated with crystalline rocks when there was a stratigraphic sequence of 

metasedimentary rocks with dikes of crystalline rocks (Dilley 2008).  However, in this 

well, the change in the H2O concentration with depth is not completely related to 

changes in rock types. The occurrence of andesite and andesitic tuffs coincides with the 

increase in H2O however at depth of  3360 to 3410 feet, a tuff breccia is encountered 

and while the H2O concentration is decreased it does not go to zero.   Also from 3610 to 

3720 feet, the matrix is composed of lithic tuffs, a “rubble” zone, and clay altered breccia 

tuff and the H2O concentration remains consistent with slight peak at 3630 ft.   

 

H2O (when it occurs) and the total gas correlate well with the fracture locations.  The 

zone from about 3200 to 3500 feet had many vugs and open spaces when compared to 

the zone from 2800 to 3000 feet.  The higher total gas in the upper zone correlates more 

with particular veins as oppose to the lower zone where the total gas is lower but the 

H2O is about the same.   The FIS log in Figure 14 indicates that in the concentration of 

CO2 and the organics were higher from 2800 to 3000 feet than in the lower zone.  

Calcite is not as prevalent a secondary mineral in the lower zone than in the 2800 to 
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3000 ft. range.  N2, Ar, and the lighter hydrocarbons also had similar concentrations in 

the lower zone to the upper zone, except for the extremely sharp increase in N2 at 2880 

ft.  From the logs there does not  appear to be a major change in rock or secondary 

minerals at this depth.  At 2919 ft. there is an open partially pyrite filled, fracture is the 

only notable change on the log.  From 3900 to 4200 ft. there is little H2O but several total 

gas peaks that correlate with fractures.  The total gas peaks correspond to zones with 

multiple veins filled with pyrite and quartz; chlorite alteration is throughout the rock. 

 

A vapor zone was encountered in this well below about 3000 ft. and temperatures 

increase dramatically below 2200 ft., suggesting the fractures encountered are 

associated with the geothermal system and are open and active.  From the FIS log 

Figure 11, below 3600 ft., many of the species do not have peaks at fracture locations 

including heavier organics, He, aromatics and H2O.  This suggests that in vapor-

dominated systems it is the total gas concentration particularly CO2, N2 and Ar and to a 

lesser extent the sulfur species and CH4 that indicate open, active fractures. 
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Figure 20:  Karaha Well T2 H2O, total gas concentrations from FIS analysis compared to 
maximum size of fractures, veins and vugs. 
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Figure 21 presents the H2O, total gas, and fracture log for Glass Mtn., well 88-28.  This 

well is composed of mixed volcanics and felsic volcanics.  The mixed volcanics are 

series of highly altered basalts to about 1266 feet.  At this depth to 1722 feet are white to 

red tuffs with some layers of sandy sediments.  Below 1722 feet are the felsic volcanics.  

A static water level in the well occurred at approximately 1500 feet and the static 

temperature increased drastically at this depth according to the geology logs.  As seen in 

Figure 21 this is also the depth (1500 to 1700 feet) where the H2O concentration 

increases and becomes significant.  The total gas concentration also has peaks at the 

1700 foot depth.  The total gas and the H2O concentrations increase from about 3000 

feet to 3400 feet.  This is a zone of a matrix of basalt but numerous calcite veins, some 

open vugs, and small bladed calcite.  Just above this zone from 2890 to 2920 feet, is a 

series of fractures about ¼ inch thick spaced at about 1 to 2 feet for about 20 feet in 

length.  These fractures are infilled with calcite.  The total gas and H2O in this zone is 

near zero, suggesting that these are older fractures as oppose to the zone from 3000 to 

3400 feet.  Although it is unknown what the production zone is in this well, the hottest 

temperatures in the well according to the geological records are from approximately 

2900 feet to 3300 feet.  There are two peaks at 1600 ft. and 1700 ft. that do not 

correspond to a fracture, vein or vug.  At this depth the rock was a tuff that had 

amygdules and veins filled with quartz and calcite.  The peak at 2100 is a fracture 

containing bladed calcite.  The next set of large peaks is at 3100 to 3400 ft.  From 1700 

ft. to 3400 ft. the total gas concentration is primarily He, H2O N2, Ar, CO2, CH4, lighter 

organics and the sulfur species.  The heavier organics are lacking. 
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Figure 21:  Glass Mtn. 88-28 H2O, total gas concentrations from FIS analysis compared to 
maximum size of fractures, veins and vugs. 
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Figure 22 presents a FIS log for Well 87-29 from Steamboat Springs, Nevada, for H2O, 

total gas and fracture size.  The primary production zone for this well is from about 500 

to about 1,200 feet with the hottest temperatures from about 600 to 850 feet.  Most of 

the lost core in the drill hole occurred while drilling through two clay-rich zones at depths 

of 90 and 160 feet.  Approximately 5.3 feet of core was lost in a major fracture zone 

between 815 and 823 feet.  An additional 1.8 feet of core was lost at a depth of 1,011 

feet.   

 

In the primary production zone from 500 to 1,200 feet there is a broad zone of fractures 

with maximum size of 10 to 100 millimeters and a few with larger openings.  The total 

gas and H2O concentration are high in this zone as well.  The total gas concentration 

from fluid inclusion analysis increases with the fracture opening.  Deeper in the well from 

2,700 feet to depth the concentration of total gas is lower but the H2O concentration is 

similar to the production zone.  Peaks in the H2O concentration correspond to these 

smaller, perhaps older fractures.  In the non-productive zone, there is a greater chance 

for fractures to fill in due to lack of hot, moving fluids generating open fractures.      
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Figure 22:  Steamboat 87-29, H2O, total gas concentration from FIS analysis compared to 
maximum size of fractures, veins, and vugs.    
 

Glass Mtn. Well 88-28 temperature profile indicates that 3000F fluids are reached at a 

depth of about 2000 feet.  It can be seen in Figure 15, the majority of fractures, veins 

and vugs occur below about 1800 feet.  As in Karaha Well T2, H2O does not occur 

DOE Identifying Fractures Using FIS                38 



throughout the well but is significant from about 1600 feet to the depth of the well with no 

H2O occurrence from 2750 to about 2950 feet.  There is a general lack of other chemical 

species below about 2100 feet as well.  There are two distinct peaks throughout the 

majority of the chemical species on the FIS log: 1700 and 2100 feet. The most notable 

exceptions are the heavier organic compounds.   

 

The Steamboat Springs core suggests that differences in gas chemistry can indicate 

production zones from non-producing zones.  The mass spectra signature for the 

Steamboat Springs core in Figure 16 show peaks in N2, Ar, CO2, and the sulfur species 

in the production zone and not in the non-producing zone.    

 

5.2 PERMEATION OF FRACTURE HOSTED FLUIDS 
 
Two producing fracture systems at Steamboat Well 87-29 were identified for study by 

‘positive’ FIS gas signatures (Dilley 2007) in agreement with temperature and drilling 

logs.  

Region 1 (Steamboat 87-29: 818 ft.) 
 
A major zone centered at 818 ft. contains a central fracture, measuring over 2.5 inches 

in aperture and hosting a white calcite vein on one side (~1/2 inch) and grey quartz on 

the other side (~1 inch). Chlorite and sericitic alteration are observed in a broad, 25 inch 

wide areole surrounding the central vein, accompanied by an apparent swarm of large 

(>5mm wide) and open fractures extending from 785 ft. to 825 ft. Extensive chlorite 

alteration of the host-rock associated with swarms of thin (<3mm wide) clayfilled 

fractures and dense configurations of microfractures (≤1mm; often 2-3 per foot of core) 

may be observed at the more distal extensions of this zone from 755 ft.  to 860 ft.  
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FIS logs characterize this zone as containing broad peaks in CO2, Ar, H2O and Total-

Gas spanning from 750 ft. to 925 ft. with the strongest signal occurring at ~820 ft. (Figure 

23). This zone also represents the hottest region of production in the well according to 

temperature logs, peaking at 162°C (Figure 24). 

 

Thermometric measurements of quartz and calcite vein mineralization and transparent 

(mostly quartz) matrix-hosted inclusions throughout this region indicate multiple 

populations of fluid-rich phases exhibiting widely variable salinities (wt% NaCl) and 

temperatures of homogenization (Th). Vein-hosted fluid inclusions at 818 ft. best 

resemble actual well temperature values; however, surrounding matrix and vein 

inclusions contain Th values upwards of 200°C (Figure 24). Th (vein) and Th (matrix) 

overlap consistently at 787, 818, 820, and 914 ft., suggesting that productions fluids 

have sufficiently permeated the host formation. Samples from 755, 787, 780, and 829 ft. 

contain fluid inclusion populations resembling the lower salinity and minimal Th values 

observed at 818’ surrounding the central fracture (Figure 25). In particular, sampled 

fracture-fill quartz veining at 755ft. represents fluid inclusions of similar compositions 

implying a genetic relationship of these minor fractures to the central fracture. The broad 

distribution of signature fluid compositions with depth through both dendritic fractures 

and wallrock alteration observed within this zone of study comply well with the broad 

nature of the FIS fracture signatures. The occurrence of multiple fluid populations at 

various depths of study is likely evidence of overprinting from earlier stages of the 

Steamboat geothermal system or heterogeneous distribution of production fluids through 

fracture units of opposing stress and origin. In either case, locating fluids associated with 

this main-production fracture based on agreement with overlapping fluid populations 

may be accomplished with FIS sampling as coarse as 30 ft (~10m) intervals, likely due 

to the dense configuration and open apertures of the surrounding fracture swarm. 
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Figure 23:  Logs of fracture occurrence.  Fluid Inclusion Stratigraphy (FIS) gas values: and 
temperature log as a function of depth for Region 1 of Steamboat 87:29 surrounding main 
fracture at 818 ft.  Log of observed fractures in core plotted for frequency, aperture (mm) 
and degree of vein fill; open fractures (red), closed fractures (green) and extensive 
replacement mineralization of matrix (yellow). 
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°C

Figure 24:  Mean fluid inclusion trapping temperatures (Th) measured from transparent 
mineral phases at various depths of Steamboat 87-29 plotted against actual temperature 
log (red line).  X-error bars represent 1-sigma standard deviation of all measured values 
(≥12 total) at that depth. 
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Figure 25:  Distribution of fluid populations determined by congruent Th and Tm (ice) 
values for Region 1 of study at Steamboat 87:29 surrounding main production fracture at 
Figure 25:  Distribution of fluid populations determined by congruent Th and Tm (ice) 
values for Region 1 of study at Steamboat 87:29 surrounding main production fracture at 
818 ft. 
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Region 2 (Steamboat 87-29: 1112 ft.) 
 
A second major production zone centered at 1112 ft. also contains a singular major 

fracture, measuring approximately 2.5 inches in diameter and partially filled with quartz. 

The hostrock in this zone exhibits pervasive chlorite alteration throughout, however the 

extent of modern secondary fracture permeability appears limited. Fractures in this zone 

occur with less frequency (<1 fractures per foot) and are on average thinner (<2mm) and 

closed due to clay fill. This region also lies within the designated production zone though 

exhibits a slightly lower temperature and is positioned at the top of a steep decline in 

thermal gradient (Figure 26). FIS logs identify at least 2 major fracture swarms occurring 

at approximately 1010 and 1112 ft. marked by consecutive apical peaks in all inorganic 

gaseous species, particularly CO2, N2 and total gas (Figure 26). One series of closed 

fractures at ~1035 ft. indicate a slight negative signal in H2O and CO2, possibly 

representing a sink for mobile, gaseous species (Dilley, 2007). 

 

Thermometric measurements of this region indicate little communication between open, 

producing fractures and surrounding swarms of veins and microfractures. Minor overlap 

in fluid populations is observed between open fracture swarms observed at 1004’ and 

1112 ft. (Figure 27). Fluids measured at 1117 ft. strongly correlate with the salinity and 

the compositions of producing fluids (812 ft.) in Region 1 above in addition to best 

matching the well log temperature (~158°C), though their FIS signature is 

indistinguishable from that observed at 1112 ft. (Figure 26). In addition, matrix (Th) and 

adjacent vein (Th) fluid inclusions from the same depth interval represent little overlap. 

The ubiquitous matrix alteration in this region signifies extensive regional hydrothermal 

influence, unlike the more localized, fracture-directed permeability observed above. A 

reduction in primary porosity due to matrix alteration is congruent with a reduction in 
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microfracture and matrix permeability. Multiple geothermal stages and an evolved history 

of geothermal fluids may be responsible for the scattered distribution of fluid 

compositions not associated with presumed, open fractures. Overprinting by current 

production fluids, as demonstrated in this region, are clearly highlighted in FIS profiles. 

 

According to fluid inclusion thermometry, fluids trapped in matrix mineralization along 

secondary microfractures agree reasonably well with fluids observed within adjacent     

(<2-3cm) secondary mineralization of large-aperture vein material. This expands the 

minimum sampling interval of wallrock cuttings which may help identify producing 

fracture in FIS analysis by also exhibiting signature gas ratios. Microfractures, 

particularly those observed within primary quartz; thin, dendritic fracture swarms; and 

pervasive replacement mineralization of wallrock is thought to aid in the distribution of 

production fluids beyond the arterial fractures of a geothermal system. Where secondary 

permeability is dominant and fractures are abundant and open, as observed near 818’ 

depth of Steamboat 87-29, current production fluids infiltrate fluid inclusions upwards of 

~25m (75 ft) from the apparent source. Here, FIS signatures thought to be associated 

with fractures are expansive and dictated by the occurrence of open, prolific secondary 

permeability. In contrast, a lack of both primary porosity and open fracture swarming due 

to extensive hydrothermal alteration may limit the pervasiveness of production gas 

signatures into new fluid inclusions; hence FIS fracture signatures appear narrow and 

apical, as observed near 1112 ft. of the same well. Production is measurable at both 818 

ft. and 1112 ft. depth in this well and FIS signatures are detectable regardless of their 

shape and extent, largely aided by tight sample spacing near known fractures. 
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Figure 26:  Logs of fracture occurrence, Fluid Inclusion Stratigraphy (FIS) gas values and 
temperature log as a function of depth for Region 2 of Steamboat 87:29 surrounding main 
fracture at 1112 ft.  Log of observed fractures in core plotted for frequency, aperture (mm) 
and degree of vein fill; open fractures (red), closed fractures (green) and extensive 
replacement mineralization of matrix (yellow). 
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Figure 27:  Distribution of fluid populations determined by congruent Th and Tm (ice) 
values for Region 2 of study at Steamboat 87:29 surrounding main production fracture at 
1112 ft. 
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6.0 CONCLUSIONS 
 
Results indicate the following: 

1) Fractures, veins and vuggy areas can be identified on FIS logs by distinct 

strong peaks (increase concentration) in multiple chemical species.  

2) The bulk analysis of volatiles within fluid inclusions appears to correspond 

with several types of fracture infilling minerals including quartz, calcite, and 

pyrite.  

3) Sampling intervals of 3 to 15 ft from well cuttings is sufficient to accurately 

observe fracture signatures where fracture swarms are rehealed, sparse 

(<2x2mm/ft) and alteration mineralization limits both primary and secondary 

permeability – as in the case of Region 2 surrounding 1112 ft in Steamboat 

87-29. These fractures have experienced multiple hydrothermal events. 

4) Greater sampling intervals of 15-30 ft are sufficiently frequent to detect major 

producing fracture zones using FIS where the crystalline host rock is largely 

unaltered and permeability is dominated by microfractures and fracture 

swarms. These fracture zones prove to be larger and less mineralized. 

5) H2O concentrations increase significantly in felsic and/or crystalline rocks.  In 

rocks such as at Steamboat concentrations of H2O occurred throughout the 

well and varied in peak height.  In Glass Mtn and Karaha, H2O did not occur 

in the basaltic rock zones and only occurred in varied in concentration in the 

more felsic rocks in both wells.   

6) The concentration of H2O correlated with fractures, veins and vugs in the 

felsic rocks in Glass Mtn. and Karaha.  In Steamboat where the H2O was 
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more pervasive, the concentration of H2O did not always correlate with 

fractures, veins and vugs. 

7) Total gas concentration correlated with fractures in the three wells.  

Significant peaks in the total gas concentration occurred with select fractures 

in the three wells. 

8) For Steamboat which had an identifiable production zone, the total gas 

concentration was much higher in the producing zone than in the non-

producing zone.  In the other two wells the variability in the total gas 

concentration was in part a function of the presence of calcite and the 

increase in CO2 gas. 

9) The concentration of CO2, H2O, Ar, N2 and sulfur species appear to increase 

significantly when the fractures, veins and vuggy areas are in a producing 

zone or zone of higher temperatures suggesting active, open fractures. 

10) The concentrations of heavier organics appear to be higher in zones that 

would have fractures that were older and closed for a length of time. 

11) This study indicates that FIS is a useful tool for identifying fracture locations, 

and that active, open fractures that would need additional stimulation for 

higher production are identifiable by higher concentrations of CO2, H2O, Ar, 

N2, and sulfur species. 

12) Additional work on identifying recently closed from older fractures should be 

conducted to determine how the chemical signature has changed over time.  

This method should also be field tested during the actual drilling of well to 

determine the cost/benefit ratio of the method. 
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