1,079 research outputs found

    Expecting the unexpected - extracolonic findings found at CT colon

    Get PDF

    Portable instrument for in-vivo infrared oxymetry using spread-spectrum modulation

    Get PDF
    Near Infrared Spectroscopy (NIRS) can be employed to monitor noninvasively and continuously local changes in hemodynamics and oxygenation of human tissues. A portable NIRS research-grade acquisition system, dedicated to measurements during muscular exercise, is presented. The instrument is able to control up to eight LED sources and two detectors. A digital correlation technique, implemented on a single-chip RISC microcontroller, performs source-to-detector multiplexing. Such algorithm is highly optimized for computational efficiency and ambient noise rejection. Software-configurable input stages allow for flexibility in instrument setup. As a result of the specific correlation technique employed, the instrument is compact, lightweight and efficient. Clinical tests on oxygen consumption show excellent performance

    Portable instrument for in-vivo infrared oxymetry using spread-spectrum modulation

    Get PDF
    Near Infrared Spectroscopy (NIRS) can be employed to monitor noninvasively and continuously local changes in hemodynamics and oxygenation of human tissues. A portable NIRS research-grade acquisition system, dedicated to measurements during muscular exercise, is presented. The instrument is able to control up to eight LED sources and two detectors. A digital correlation technique, implemented on a single-chip RISC microcontroller, performs source-to-detector multiplexing. Such algorithm is highly optimized for computational efficiency and ambient noise rejection. Software-configurable input stages allow for flexibility in instrument setup. As a result of the specific correlation technique employed, the instrument is compact, lightweight and efficient. Clinical tests on oxygen consumption show excellent performance

    Blue urea : fertilizer with reduced environmental impact

    Get PDF
    Synthetic nitrogen fertilizers such as urea are a necessity for food production, making them invaluable toward achieving global food security. Conventional manufacture of urea is conducted in centralized production plants at an enormous scale, with the subsequent prilled urea product distributed to the point-of-use. Despite consuming carbon dioxide in the synthesis, the overall process is carbon positive due to the use of fossil feedstocks, resulting in significant net emissions. Blue Urea could be produced using attenuated reaction conditions and hydrogen derived from renewable-powered electrolysis to produce a reduced-carbon alternative. This paper demonstrates the intensified production of urea and ammonium nitrate fertilizers from sustainable feedstocks, namely water, nitrogen, and carbon dioxide. Critically, the process can be scaled-down such that equipment can be housed in a standardized ISO container deployed at the point-of-use, delocalizing production and eliminating costs, and emissions associated with transportation. The urea and ammonium nitrate were synthesized in a semi-continuous process under considerably milder conditions to produce aqueous fertilizers suitable for direct soil application, eliminating the financial and energetic costs associated with drying and prilling. The composition of the fertilizers from this process were found to be free from contaminants, making them ideal for application. In growth studies, the synthesized urea and ammonium nitrate were applied under controlled conditions and found to perform comparably to a commercial fertilizer (Nitram). Crucially, both the synthesized fertilizers enhanced biomass growth, nitrogen uptake and leaf chlorophylls (even in depleted soils), strongly suggesting they would be effective toward improving crop yields and agricultural output. The Blue Urea concept is proposed for installation in ISO containers and deployment on farms, offering a turnkey solution for point-of-need production of nitrogen fertilizers

    Fe@CNT-monoliths for the conversion of carbon dioxide to hydrocarbons:Structural characterisation and Fischer-Tropsch reactivity investigations

    Get PDF
    High carbon dioxide conversion to hydrocarbons using iron nanoparticle (Fe@CNT) catalysts supported on cordierite monoliths.</p

    ‘Ethnic group’, the state and the politics of representation

    Get PDF
    The assertion, even if only by implication, that ‘ethnic group’ categories represent ‘real’ tangible entities, indeed identities, is commonplace not only in the realms of political and policy discourse but also amongst contemporary social scientists. This paper, following Brubaker (2002), questions this position in a number of key respects: of these three issues will dominate the discussion that follows. First, there is an interrogation of the proposition that those to whom the categories/labels refer constitute sociologically meaningful ‘groups’ as distinct from (mere) human collectivities. Secondly, there is the question of how these categories emerge, i.e. exactly what series of events, negotiations and contestations lie behind their construction and social acceptance. Thirdly, and as a corollary to the latter point, we explore the process of reification that leads to these categories being seen to represent ‘real things in the world’ (ibid.)

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    The fitness landscape of the African salmonella typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid

    Get PDF
    We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated

    Backward pion-nucleon scattering

    Get PDF
    A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the NαN_\alpha, NγN_\gamma, Δδ\Delta_\delta and Δβ\Delta_\beta trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable uu, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a G39G_{39} resonance with a mass of 2.83 GeV as member of the Δβ\Delta_{\beta} trajectory from the corresponding Chew-Frautschi plot.Comment: 12 pages, 16 figure
    corecore