1,562 research outputs found

    Non-Pauli Effects from Noncommutative Spacetimes

    Full text link
    Noncommutative spacetimes lead to nonlocal quantum field theories (qft's) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime Bχn\mathcal{B}_{\chi\vec{n}} different from the Moyal plane. We argue that it quantizes time in units of χ\chi. Energy is then conserved only mod 2πχ\frac{2\pi}{\chi}. Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of arXiv:1003.2250. This version is close to the one accepted by JHE

    Phase separation and suppression of critical dynamics at quantum transitions of itinerant magnets: MnSi and (Sr1x_{1-x}Cax_{x})RuO3_{3}

    Full text link
    Quantum phase transitions (QPTs) have been studied extensively in correlated electron systems. Characterization of magnetism at QPTs has, however, been limited by the volume-integrated feature of neutron and magnetization measurements and by pressure uncertainties in NMR studies using powderized specimens. Overcoming these limitations, we performed muon spin relaxation (μ\muSR) measurements which have a unique sensitivity to volume fractions of magnetically ordered and paramagnetic regions, and studied QPTs from itinerant heli/ferro magnet to paramagnet in MnSi (single-crystal; varying pressure) and (Sr1x_{1-x}Cax_{x})RuO3_{3} (ceramic specimens; varying xx). Our results provide the first clear evidence that both cases are associated with spontaneous phase separation and suppression of dynamic critical behavior, revealed a slow but dynamic character of the ``partial order'' diffuse spin correlations in MnSi above the critical pressure, and, combined with other known results in heavy-fermion and cuprate systems, suggest a possibility that a majority of QPTs involve first-order transitions and/or phase separation.Comment: 11 pages, 4 figures, 21 authors, to appear in Nature Physic

    Screening of DUB activity and specificity by MALDI-TOF mass spectrometry

    Get PDF
    Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Finite proliferative lifespan in vitro of a human breast cancer cell strain isolated from a metastatic lymph node

    Full text link
    We recently described culture conditions that allow proliferation of metastatic human breast cancer cells from biopsy specimens of certain patient samples. These conditions resulted in the development of an immortalized cell strain designated SUM-44PE. These same culture conditions were used to isolate a human breast cancer cell strain from a metastatic lymph node of a separate breast cancer patient. The SUM-16LN human breast cancer cells isolated from this specimen were cultured either in serum-free medium or serum-containing medium supplemented with insulin and hydrocortisone. Unlike the SUM-44PE cells that have proliferated in culture continuously for over two years, SUM-16LN cells proliferated in culture for approximately 200 days and underwent 15 to 20 population doublings before undergoing cell senescence. No cells of this strain proliferated beyond passage 8. SUM-16LN cells were keratin-19 positive and had an aneuploid karyotype. These cells overexpressed p53 protein and had an amplified epidermal growth factor (EGF) receptor gene that resulted in high level expression of tyrosine phosphorylated EGF receptor protein. Despite the presence of high levels of tyrosine phosphorylated EGF receptor in these cells, they proliferated in serum-free, EGF-free medium and did not secrete detectable levels of EGF-like mitogenic growth factor. In addition, these cells were potently growth inhibited by all concentrations of exogenous EGF tested and by the neutralizing EGF receptor antibody Mab 425. These results suggest that the high level of tyrosine phosphorylated EGF receptor present in these cells is the direct result of receptor overexpression and not the result of the presence of a simulatory ligand. Thus, SUM-16LN represents a human breast cancer cell strain that exhibited genetic and cellular characteristics of advanced human breast cancer cells. Nevertheless, these cells exhibited a finite proliferative lifespan in culture, suggesting that cellular immortalization is not a phenotype expressed by all human breast cancer cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44199/1/10549_2004_Article_BF00666588.pd

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities.

    Get PDF
    The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from Kras(G12D/+);p53-null mice frequently exhibit Kras(G12D) allelic enrichment (Kras(G12D)/Kras(wild-type) > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, Kras(G12D/G12D) cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of Kras(G12D) copy gain), but not in the corresponding early tumours (Kras(G12D) heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression.We thank T. Jacks (Kras^LSL-G12D), A. Berns (p53^Fx) and the NIH Mouse repository for mice. We also thank Sam Kleeman and Patricia Ogger for assistance with redox cell profiling and cell viability assays, respectively. We are very thankful to CRUK CI BRU staff for support with in vivo work and all the members of the Martins lab for critical comments and advice. This work was supported by the Medical Research Council.This is the author accepted manuscript. The final version is available at http://www.nature.com/nature/journal/v531/n7592/full/nature16967.html

    Subtle changes in the flavour and texture of a drink enhance expectations of satiety

    Get PDF
    Background: The consumption of liquid calories has been implicated in the development of obesity and weight gain. Energy-containing drinks are often reported to have a weak satiety value: one explanation for this is that because of their fluid texture they are not expected to have much nutritional value. It is important to consider what features of these drinks can be manipulated to enhance their expected satiety value. Two studies investigated the perception of subtle changes in a drink’s viscosity, and the extent to which thick texture and creamy flavour contribute to the generation of satiety expectations. Participants in the first study rated the sensory characteristics of 16 fruit yogurt drinks of increasing viscosity. In study two, a new set of participants evaluated eight versions of the fruit yogurt drink, which varied in thick texture, creamy flavour and energy content, for sensory and hedonic characteristics and satiety expectations. Results: In study one, participants were able to perceive small changes in drink viscosity that were strongly related to the actual viscosity of the drinks. In study two, the thick versions of the drink were expected to be more filling and have a greater expected satiety value, independent of the drink’s actual energy content. A creamy flavour enhanced the extent to which the drink was expected to be filling, but did not affect its expected satiety. Conclusions: These results indicate that subtle manipulations of texture and creamy flavour can increase expectations that a fruit yogurt drink will be filling and suppress hunger, irrespective of the drink’s energy content. A thicker texture enhanced expectations of satiety to a greater extent than a creamier flavour, and may be one way to improve the anticipated satiating value of energy-containing beverages

    Transcript analysis of the extended hyp-operon in the cyanobacteria Nostoc sp. strain PCC 7120 and Nostoc punctiforme ATCC 29133

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria harbor two [NiFe]-type hydrogenases consisting of a large and a small subunit, the Hup- and Hox-hydrogenase, respectively. Insertion of ligands and correct folding of nickel-iron hydrogenases require assistance of accessory maturation proteins (encoded by the <it>hyp</it>-genes). The intergenic region between the structural genes encoding the uptake hydrogenase (<it>hupSL</it>) and the accessory maturation proteins (<it>hyp </it>genes) in the cyanobacteria <it>Nostoc </it>PCC 7120 and <it>N. punctiforme </it>were analysed using molecular methods.</p> <p>Findings</p> <p>The five ORFs, located in between the uptake hydrogenase structural genes and the <it>hyp</it>-genes, can form a transcript with the <it>hyp</it>-genes. An identical genomic localization of these ORFs are found in other filamentous, N<sub>2</sub>-fixing cyanobacterial strains. In <it>N. punctiforme </it>and <it>Nostoc </it>PCC 7120 the ORFs upstream of the <it>hyp</it>-genes showed similar transcript level profiles as <it>hupS </it>(hydrogenase structural gene), <it>nifD </it>(nitrogenase structural gene), <it>hypC </it>and <it>hypF </it>(accessory hydrogenase maturation genes) after nitrogen depletion. <it>In silico </it>analyzes showed that these ORFs in <it>N. punctiform</it>e harbor the same conserved regions as their homologues in <it>Nostoc </it>PCC 7120 and that they, like their homologues in <it>Nostoc </it>PCC 7120, can be transcribed together with the <it>hyp</it>-genes forming a larger extended <it>hyp-</it>operon. DNA binding studies showed interactions of the transcriptional regulators CalA and CalB to the promoter regions of the extended <it>hyp</it>-operon in <it>N. punctiforme </it>and <it>Nostoc </it>PCC 7120.</p> <p>Conclusions</p> <p>The five ORFs upstream of the <it>hyp</it>-genes in several filamentous N<sub>2</sub>-fixing cyanobacteria have an identical genomic localization, in between the genes encoding the uptake hydrogenase and the maturation protein genes. In <it>N. punctiforme </it>and <it>Nostoc </it>PCC 7120 they are transcribed as one operon and may form transcripts together with the <it>hyp</it>-genes. The expression pattern of the five ORFs within the extended <it>hyp</it>-operon in both <it>Nostoc punctiforme </it>and <it>Nostoc </it>PCC 7120 is similar to the expression patterns of <it>hupS</it>, <it>nifD</it>, <it>hypF </it>and <it>hypC</it>. CalA, a known transcription factor, interacts with the promoter region between <it>hupSL </it>and the five ORFs in the extended <it>hyp</it>-operon in both <it>Nostoc </it>strains.</p

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    corecore