71 research outputs found

    The potential for automated question answering in the context of genomic medicine: an assessment of existing resources and properties of answers

    Get PDF
    Knowledge gained in studies of genetic disorders is reported in a growing body of biomedical literature containing reports of genetic variation in individuals that map to medical conditions and/or response to therapy. These scientific discoveries need to be translated into practical applications to optimize patient care. Translating research into practice can be facilitated by supplying clinicians with research evidence. We assessed the role of existing tools in extracting answers to translational research questions in the area of genomic medicine. We: evaluate the coverage of translational research terms in the Unified Medical Language Systems (UMLS) Metathesaurus; determine where answers are most often found in full-text articles; and determine common answer patterns. Findings suggest that we will be able to leverage the UMLS in development of natural language processing algorithms for automated extraction of answers to translational research questions from biomedical text in the area of genomic medicine

    PGC-1α promotes exercise-induced autophagy in mouse skeletal muscle

    Get PDF
    Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise‐induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal autophagy levels. Therefore, the aim of this study was to investigate the role of the key regulator of muscle oxidative capacity, PGC‐1α, in exercise‐induced autophagy at several time points during recovery. Mice with transgenic muscle‐specific overexpression (TG) or knockout (MKO) of PGC‐1α and their respective littermate controls were subjected to a single 1 h bout of treadmill running and euthanized immediately (0 h), 2, 6, and 10 h after exercise. In the PGC‐1α MKO strain, quadriceps protein content of the autophagy marker LC3II was increased from 2 h into recovery in lox/lox control, but not in MKO mice. In the PGC‐1α TG strain, quadriceps protein content of LC3II was increased from 2 h after exercise in TG, but not in WT. Although AMPK and ACC phosphorylation was increased immediately following exercise, the observed exercise‐induced autophagy response was not associated with phosphorylation of the AMPK‐target ULK1. However, lower protein carbonyl content was observed in lox/lox and TG mice after exercise coinciding with the increased LC3 lipidation. In conclusion, the present results suggest a role of skeletal muscle PGC‐1α in coordinating several exercise‐induced adaptive responses including autophagic removal of damaged cellular components

    Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise

    Get PDF
    An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism

    Developing a Prototype System for Integrating Pharmacogenomics Findings into Clinical Practice

    Get PDF
    Findings from pharmacogenomics (PGx) studies have the potential to be applied to individualize drug therapy to improve efficacy and reduce adverse drug events. Researchers have identified factors influencing uptake of genomics in medicine, but little is known about the specific technical barriers to incorporating PGx into existing clinical frameworks. We present the design and development of a prototype PGx clinical decision support (CDS) system that builds on existing clinical infrastructure and incorporates semi-active and active CDS. Informing this work, we updated previous evaluations of PGx knowledge characteristics, and of how the CDS capabilities of three local clinical systems align with data and functional requirements for PGx CDS. We summarize characteristics of PGx knowledge and technical needs for implementing PGx CDS within existing clinical frameworks. PGx decision support rules derived from FDA drug labels primarily involve drug metabolizing genes, vary in maturity, and the majority support the post-analytic phase of genetic testing. Computerized provider order entry capabilities are key functional requirements for PGx CDS and were best supported by one of the three systems we evaluated. We identified two technical needs when building on this system, the need for (1) new or existing standards for data exchange to connect clinical data to PGx knowledge, and (2) a method for implementing semi-active CDS. Our analyses enhance our understanding of principles for designing and implementing CDS for drug therapy individualization and our current understanding of PGx characteristics in a clinical context. Characteristics of PGx knowledge and capabilities of current clinical systems can help govern decisions about CDS implementation, and can help guide decisions made by groups that develop and maintain knowledge resources such that delivery of content for clinical care is supported

    Clinical Data: Sources and Types, Regulatory Constraints, Applications.

    Get PDF
    Access to clinical data is critical for the advancement of translational research. However, the numerous regulations and policies that surround the use of clinical data, although critical to ensure patient privacy and protect against misuse, often present challenges to data access and sharing. In this article, we provide an overview of clinical data types and associated regulatory constraints and inferential limitations. We highlight several novel approaches that our team has developed for openly exposing clinical data

    Inducible deletion of skeletal muscle AMPKα 1 reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise

    Get PDF
    International audienceObjective: Current evidence for AMPK-mediated regulation of skeletal muscle metabolism during exercise is mainly based on transgenic mouse models with chronic (lifelong) disruption of AMPK function. Findings based on such models are potentially biased by secondary effects related to chronic lack of AMPK function. In an attempt to study the direct effect(s) of AMPK on muscle metabolism during exercise, we generated a new mouse model with inducible muscle-specific deletion of AMPKα catalytic subunits in adult mice.Methods: Tamoxifen-inducible and muscle-specific AMPKα1/α2 double KO mice (AMPKα imdKO) were generated using the Cre/loxP system with the Cre driven by the human skeletal muscle actin (HSA) promotor.Results: During treadmill running at the same relative exercise intensity, AMPKα imdKO mice showed greater depletion of muscle ATP, which was associated with accumulation of the deamination product IMP. Muscle-specific deletion of AMPKα in adult mice promptly reduced maximal running speed, muscle glycogen content and was associated with reduced expression of UGP2, a key component of the glycogen synthesis pathway. Muscle mitochondrial respiration, whole body substrate utilization as well as muscle glucose uptake and fatty acid (FA) oxidation during muscle contractile activity remained unaffected by muscle-specific deletion AMPKα subunits in adult mice.Conclusions: Inducible deletion of AMPKα subunits in adult mice reveals that AMPK is required for maintaining muscle ATP levels and nucleotide balance during exercise, but is dispensable for regulating muscle glucose uptake, FA oxidation and substrate utilization during exercise

    Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support

    Get PDF
    In pursuing personalized medicine, pharmacogenomic (PGx) knowledge may help guide prescribing drugs based on a person’s genotype. Here we evaluate the feasibility of incorporating PGx knowledge, combined with clinical data, to support clinical decision-making by: 1) analyzing clinically relevant knowledge contained in PGx knowledge resources; 2) evaluating the feasibility of a rule-based framework to support formal representation of clinically relevant knowledge contained in PGx knowledge resources; and, 3) evaluating the ability of an electronic medical record/electronic health record (EMR/EHR) to provide computable forms of clinical data needed for PGx clinical decision support. Findings suggest that the PharmGKB is a good source for PGx knowledge to supplement information contained in FDA approved drug labels. Furthermore, we found that with supporting knowledge (e.g. IF age <18 THEN patient is a child), sufficient clinical data exists in University of Washington’s EMR systems to support 50% of PGx knowledge contained in drug labels that could be expressed as rules

    Decadal changes in fire frequencies shift tree communities and functional traits

    Get PDF
    Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling their sensitivity in 29 sites that experienced multi-decadal alterations in fire frequencies in savanna and forest ecosystems across tropical and temperate regions. Fire had a strong overall effect on tree communities, with an average fire frequency (one fire every three years) reducing stem density by 48% and basal area by 53% after 50 years, relative to unburned plots. The largest changes occurred in savanna ecosystems and in sites with strong wet seasons or strong dry seasons, pointing to fire characteristics and species composition as important. Analyses of functional traits highlighted the impact of fire-driven changes in soil nutrients because frequent burning favoured trees with low biomass nitrogen and phosphorus content, and with more efficient nitrogen acquisition through ectomycorrhizal symbioses. Taken together, the response of trees to altered fire frequencies depends both on climatic and vegetation determinants of fire behaviour and tree growth, and the coupling between fire-driven nutrient losses and plant traits

    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms.

    Get PDF
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings
    corecore