307 research outputs found

    Alfven solitons in the solar wind

    Get PDF
    A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described

    Anterior Cervical Discectomy and Fusion YouTube Videos as a Source of Patient Education.

    Get PDF
    Cross sectional study.This article is freely available online via Open Access

    Improving reintroduction success in large carnivores through individual-based modelling: How to reintroduce Eurasian lynx (Lynx lynx) to Scotland

    Get PDF
    Globally, large carnivores have been heavily affected by habitat loss, fragmentation and persecution, sometimes resulting in local extinctions. With increasing recognition of top-down trophic cascades and complex predator- prey dynamics, reintroductions are of growing interest for restoration of ecosystem functioning. Many re- introductions have however failed, in part due to poor planning and inability to model complex eco-evolutionary processes to give reliable predictions. Using the case study of Eurasian lynx (Lynx lynx), a large predator being considered for reintroduction to Scotland, we demonstrate how an individual-based model that integrates demography with three distinct phases of dispersal (emigration, transfer and settlement) can be used to explore the relative suitability of three geographically-distant potential reintroduction sites, multi-site reintroductions and two founding population sizes. For a single-site reintroduction of 10 lynx, our simulation results show a clear hierarchy of suitability across all metrics. Reintroduction in the Kintyre Peninsula (west coast) consistently performed best, with a probability of population persistence at year 100 of 83%, and the Scottish component of Kielder Forest (southern Scotland) worst, with only a 21% chance of population persistence to year 100. Simultaneous two-site reintroduction in the Kintyre Peninsula and in Aberdeenshire (near the east coast) of 32 lynx gave a 96% persistence at 100 years. Our model was highly sensitive to survival, particularly of adults, highlighting this parameter's importance for reintroduction success. The results strongly indicate the potential viability of Eurasian lynx reintroduction to Scotland given the current cover of suitable woodland habitat. More generally, our work demonstrates how emerging modelling approaches incorporating increased realism in re- presenting species' demography, ecology and dispersal can have high value for quick, inexpensive assessment of likely reintroduction success and for selection between alternative strategies.REF Compliant by Deposit in Stirling's Repositor

    Symmetric arrangement of mitochondria:plasma membrane contacts between adjacent photoreceptor cells regulated by Opa1

    Get PDF
    Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/− photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement

    Multi-stage resistance to <i>Zymoseptoria tritici</i> revealed by GWAS in an Australian bread wheat diversity panel

    Get PDF
    Septoria tritici blotch (STB) has been ranked the third most important wheat disease in the world, threatening a large area of wheat production. Although major genes play an important role in the protection against Zymoseptoria tritici infection, the lifespan of their resistance unfortunately is very short in modern wheat production systems. Combinations of quantitative resistance with minor effects, therefore, are believed to have prolonged and more durable resistance to Z. tritici. In this study, new quantitative trait loci (QTLs) were identified that are responsible for seedling-stage resistance and adult-plant stage resistance (APR). More importantly was the characterisation of a previously unidentified QTL that can provide resistance during different stages of plant growth or multi-stage resistance (MSR). At the seedling stage, we discovered a new isolate-specific QTL, QSt.wai.1A.1. At the adult-plant stage, the new QTL QStb.wai.6A.2 provided stable and consistent APR in multiple sites and years, while the QTL QStb.wai.7A.2 was highlighted to have MSR. The stacking of multiple favourable MSR alleles was found to improve resistance to Z. tritici by up to 40%

    A variable heart rate multi-compartmental coupled model of the cardiovascular and respiratory systems

    Get PDF
    Current mathematical models of the cardiovascular system that are based on systems of ordinary differential equations are limited in their ability to mimic important features of measured patient data, such as variable heart rates (HR). Such limitations present a significant obstacle in the use of such models for clinical decision-making, as it is the variations in vital signs such as HR and systolic and diastolic blood pressure that are monitored and recorded in typical critical care bedside monitoring systems. In this paper, novel extensions to well-established multi-compartmental models of the cardiovascular and respiratory systems are proposed that permit the simulation of variable HR. Furthermore, a correction to current models is also proposed to stabilize the respiratory behaviour and enable realistic simulation of vital signs over the longer time scales required for clinical management. The results of the extended model developed here show better agreement with measured bio-signals, and these extensions provide an important first step towards estimating model parameters from patient data, using methods such as neural ordinary differential equations. The approach presented is generalizable to many other similar multi-compartmental models of the cardiovascular and respiratory systems

    Nanoscale wafer patterning using SPM induced local anodic oxidation in InP substrates

    Get PDF
    Atomic force microscopy (AFM) assisted local anodic oxidation (LAO) offers advantages over other semiconductor fabrication techniques as it is a low contamination method. We demonstrate the fabrication of deep and highly reproducible nanohole arrays on InP using LAO. Nanohole and nano-oxide mound radius and depth are controlled independently by altering AFM tip bias and humidity, with a maximum nanohole depth of 15.6 ± 1.2 nm being achieved. Additionally, the effect of tip write speed on oxide line formation is compared for n-type, p-type and semi-insulating substrates, which shows that n-type InP oxidizes at a slower rate that semi-insulated or p-type InP. Finally, we calculate the activation energy for LAO of semi-insulating InP to be 0.4 eV, suggesting the oxidation mechanism is similar to that which occurs during plasma oxidation

    Symmetric arrangement of mitochondria:plasma membrane contacts between adjacent photoreceptor cells regulated by Opa1

    Get PDF
    Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/− photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement
    corecore