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ABSTRACT

We present here a nonlinear Alfven soliton solution of the MHD

equations. This solution may represent the final state of modula-

tionally unstable Alfven waves. We also briefly describe a model of

the expected turbulent spectrum due to a collection of such solitons.

*Currently a Nuffield Foundation Science Research Fellow

i. Introduction

The Alfvenic nature of the large amplitude turbulence in the

solar wind has been known for some time (Belcher and Davis 1971). The

relationship between this turbulence and traditional linear MHD waves

or special large amplitude solutions (Barnes and Hollweg 1974;

Abraham-Shrauner and Feldman 1977) remains unclear. Equally unclear

are the consequences this turbulence may have for solar wind particle

populations, although ion drift speeds proportional to the Alfven

speed and high perpendicular temperatures suggest some wave-particle

connections (Schwartz et al. 1981).

Efforts to describe solar wind turbulence usually begin with a

perturbation expansion, leading either to the "decay cascade" (Chin

and Wentzel 1972; Cohen and Dewar 1974; Schwartz 1977) if the system

is described purely in terms of its linear modes, or to the

modulational instability (Derby 1978; Goldstein 1978) of a single

large amplitude Alfven wave. We discuss here a third alternative
which leads to a nonlinear soliton solution. This solution may

represent the state to which a modulationally unstable Alfven wave

relaxes. Using an ensemble average of collections of these solitons,

we find a turbulence power spectrum E(k)=k -2 at high frequencies

which flattens toward the low frequency end. Details of the calcula-

tions can be found in Ovenden et al. (1983). Further work on

alternative turbulence models and particle-soliton interactions is

currently in progress.

2. The Soliton Solution

We begin with the one fluid description of a plasma: continuity

and momentum equations and the generalized Ohm's law coupled with

Maxwell's equations (eg. Boyd and Sanderson 1969 3.40, 3.54 and 3.61-

3.63). Assuming quasi-neutrality, an isothermal equation of state,

and neglecting the displacement current, resistivity and the 8_/8t

93

https://ntrs.nasa.gov/search.jsp?R=19840005007 2020-03-22T07:41:26+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10371489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


term in the generalized Ohm0s law, it is easy to eliminate the

electric field and transverse fluid velocity. For simplicity we

consider only parallel-propagation so that 8/8x = 0 m 8/ay where
the z direction corresponds to that of the background magnetic field

Bo. Ultimately, the resulting equations can be written

a2B+

2"
at

8B+

n i VA _ n 8z
] ] - 0 (1.1)

and

2
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where B± =B x ± iBy, v is the z-component of the fluid velocity, n is

the density, VA-Bo/q(4_p) is the Alfven speed, ni the proton

gyrofrequency, cs the isothermal sound speed, and d/dt- a/at + va/az

Both B± and n have been normalized to their background values (Bo and

no respectively). The harmonic solutions to (i.i) and (1.2) with IB±J
independent of z are just the Alfven-Ion cyclotron modes investigated

by Abraham-Shrauner and Feldman (1977).

We are interested in modes with small but nonzero fluctuations 0n

and v in the density and velocity respectively. To this end, we

linearize (i.i) and (1.2) with respect to these quantities. Further-

more, we insert an Alfven wave with slowly varying amplitude, viz.,

i(kAz- t )
B+ m b(z,t) e - (1.3)

where _o± " _A ( 1 ; _A/2_ i ) and assuming _A<<ni with w A -kAV A • At

this point, the modulational instability calculation proceeds by

perturbing the b - constant solution with fluctuations 0b, 0n, v all

varying harmonically in space and time. Such a calculation yields

instabilities with e-folding lengths = 10 -2 AU.

Here, following Zakharov (1972) we search instead for soliton

solutions of (1.1)-(1.2) with a wave amplitude in (1.3) given by

i0w t
b(z,t) - b O sech [ K(z-Vt) ] e , (1.4)

keeping terms to third order in Ib I and assuming b varies slowly
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compared to the original Alfven wave.

consistent constants V, K, and _ given by

v - vA [ 1 -

This process yields self-

(i. 5a)

and

kAbo { ni/_A }i/2K - I-B (i. 5b)
2

_A Ibo12
_ - - (1.5c)

8(1 - B)

for values of the ratio of sound to Alfven speed squared (B) << 1 and
for the _o+ (left hand polarized ) wave. The density (in non-

dimensional units) and velocity variations are given by

Ib(z,t) 12

8n - (1.6)
2(I-B)

and

v = V _n (1.7)

Physically, the increased density (1.6) leads to a lower local

Alfven speed causing the associated build up in wave energy in this

region. The energy transport is achieved by forcing this material to

move at the wave group velocity (l.Sa), thereby resulting in the

unchanged soliton envelope. It is not yet clear whether the solution

(1.4)-(1.9) represents a true soliton, in the sense that two such

solutions would pass through one another without interacting.

2. Turbulence Spectrum

To build a picture of a turbulent spectrum out of solitons, we

follow the work of Kingsep et al. (1973) and Yu and Spatschek (1976)

who consider an ensemble of systems with a common energy density W

(normalized to BO2/8_) and length L. The various realizations
correspond to different numbers, N, of non-overlapping, assumed

identical, solitons into which this energy is divided. The value of N

lies in the interval

1 < N < KL

Ensemble averaging over these realizations, which we take with equal

probablities, yields an energy spectrum

< Ib k12 > = 1 [ ok tanh (ok) - log cosh (ok) ] (2.1)
(ok) 2

where

a m }11.
k A Ni8_W
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AS can be seen in

the plot of (2.1) shown

in Fig. 1 (or directly

from the explicit form of

(2.1)), this spectrum is

flat at low frequencies

and falls off steeply as

k-2 at high frequencies.

Although this is

qualitatively similar to

solar wind observations

(eg. Bavassano et al.

1982; Denskat and

Neubauer 1982), it is not

yet clear whether

quantitative agreement

can be improved within

the soliton description

by, eg., an alternative

ensemble average,

collections of unequal

solitons, etc.
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Fig. i. Ensemble averaged power spectrum of

various collections of solitons describing

the same total turbulent energy.

3. Summary

we have found a nonlinear Alfven soliton solution which we

envisage as the final state of a modulationally unstable Alfven wave.

Dividing turbulent energy in a given region into such solitons and

averaging over the different possible arrangements yields a turbulent

spectrum which is flat at low k and falls as k-2 at large k. Remaining

questions concern other possible descriptions of solar wind turbu-

lence within this context and the consequences of particle-soliton

interactions for solar wind ion distributions.
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