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Current mathematical models of the cardiovascular system that are based on
systems of ordinary differential equations are limited in their ability to
mimic important features of measured patient data, such as variable heart
rates (HR). Such limitations present a significant obstacle in the use of
such models for clinical decision-making, as it is the variations in vital
signs such as HR and systolic and diastolic blood pressure that are moni-
tored and recorded in typical critical care bedside monitoring systems. In
this paper, novel extensions to well-established multi-compartmental
models of the cardiovascular and respiratory systems are proposed that
permit the simulation of variable HR. Furthermore, a correction to current
models is also proposed to stabilize the respiratory behaviour and enable
realistic simulation of vital signs over the longer time scales required for
clinical management. The results of the extended model developed here
show better agreement with measured bio-signals, and these extensions
provide an important first step towards estimating model parameters
from patient data, using methods such as neural ordinary differential
equations. The approach presented is generalizable to many other similar
multi-compartmental models of the cardiovascular and respiratory systems.
1. Introduction
Computational models of biological systems can help further understanding of
physiology, and drive the development of predictive tools for clinical decision-
making. A wide variety of models of the human cardiovascular system (CVS)
have been proposed, and their complexity is frequently classified in terms of
the number of spatial dimensions that are simulated [1,2]. At the simplest end
of the scale lie zero-dimensional (lumped parameter) models, which have no
spatial information and instead model the CVS as discrete compartments (also
known as a pressure–volume or PV model). One-dimensional models permit
estimation of how flow and pressure waves propagate through a network of
blood vessels [3–5]. Two-dimensional, or more commonly, three-dimensional
models use finite-element analysis (FEA) and/or computational fluid dynamics
(CFD) to obtain highly detailed simulations of fluid flows [6,7]; these often still
rely on lower dimensional models for the boundary conditions.

This work is concerned only with zero-dimensional time-dependent ordin-
ary differential equation (ODE) models. Early examples of these models are the
mono-compartment Windkessel [8,9] and Westkessel [10,11] models, employ-
ing electrical circuit analogies. By comparison, multi-compartment models
split the CVS into discrete segments, enhancing the level of detail; using
more compartments, however, requires more parameters to be estimated. One
of the more extreme examples of this is the so-called Guyton model [12],

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2023.0339&domain=pdf&date_stamp=2023-10-18
mailto:sam.lishak.21@ucl.ac.uk
http://orcid.org/
http://orcid.org/0009-0005-7359-5724
http://orcid.org/0000-0002-9781-665X
http://orcid.org/0000-0002-2818-6228
http://orcid.org/0000-0003-1292-0210
http://creativecommons.org/licenses/by/4.0/


Ltc

Pvc

Vvc

Prv

Vrv

Ppa

Vpa

Ppu

Vpu

Plv

Vlv

Pao

Vao

Rtc Qtc Lpv Rpv Qpv

QpulRpulRsys

Qav Rav Lav Qmt Rmt Lmt

Qsys
ventricular
interaction

Figure 1. Schematic of the full cardiovascular system model. The inductances are only present when modelling inertial flows. The diodes represent check valves.
Nomenclature is defined in tables 1 and 2.
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which describes most of the main blood vessels as well as

the regulation of autonomous and hormone systems. More
commonly, simpler representations are used where the com-
plexity can be increased in an area of interest [2,13,14].
These models are typically only analysed once they reach a
stable orbit, where the system returns to the same state
after each heartbeat. As a result, such models are typically
only simulated for as long as required for the initial transient
behaviour (due to imprecise or unknown initial conditions) to
settle; beyond this, no extra information can be obtained by
running for longer.

The activity of the CVS and the respiratory system are
strongly coupled, in part due to the location of the heart
and adjacent arteries and veins inside the thoracic cavity,
which experiences varying pressure due to activity of the res-
piratory muscles. Including these effects leads to more
detailed models capable of investigating specific situations,
such as the Valsalva manoeuvre or artificial ventilation,
over longer time periods [2,15–21].

These models may include some sort of regulatory
system model for the control of heart rate (HR) and/or respir-
atory rate, leading to greatly increased model complexity
[19,21–25]. Although this is useful for building under-
standing of specific conditions, implementing in silico all
possible pathways by which respiration and circulation
can be controlled in vivo is infeasible; for example, emotional
responses can significantly affect HR, yet a model aiming
to quantify or predict this in a clinical setting would
be very challenging to design due to the plethora of under-
pinning mechanisms (and their quantification) that would
be required.

Some other contemporary CVS models, for example
CircAdapt [26–28], permit open-loop control of HR, although
it can only be changed in discrete steps and requires the ODE
integration to be restarted at each change point (typically
between predetermined ‘rest’ and ‘exercise’ settings).

This paper focuses on Smith’s multi-compartment model
of the human CVS with ventricular interaction [14,29], along
with Jallon’s extension to this model to simulate interaction
between the CVS and the respiratory system [18]. These
models are designed to minimize complexity, and do not con-
tain any mechanism for dynamic variation of HR. All models
were implemented using JAX [30,31], with a view to permit-
ting autodifferentiation of the ODE solutions. Future
implications of this work, for example grey-box modelling,
are discussed in §5.
Two novel modifications to these models are presented
and explored in this paper. Firstly, a correction is derived in
§2.3 to stabilize the behaviour of Jallon’s respiratory system
model over longer simulation times. Secondly, an extension
to the cardiac driver function in the CVS model is developed
in §2.4 to allow simulation incorporating a variable HR as an
arbitrary function of time.

After specifying realistic model parameters and initial
conditions in §2.5, results from simulations of the various
models (including those previously published as well as
those incorporating the extensions developed here) are pre-
sented in §3. The results demonstrate stable long-term
cyclical behaviour of the interactive system even under vari-
able HR conditions. A discussion follows in §4.

The approach to implementing variable HR developed
herein is in theory generalizable to many other ODE
models; the model given here is just one example of this. In
§5, the paper concludes by discussing this, and also some
further opportunities for applications of such models.
2. Methods
A review of Smith’s model of the human CVS [14] is included in
§2.1, along with an extension by Jallon [18] to simulate inter-
action between the heart and lungs in §2.2. Subsequently, §2.3
presents how Jallon’s model can be stabilized to allow long-
term simulation, and a method for implementing variable HR
is developed in §2.4. Finally, §2.5 contains a complete listing of
model parameters and initial conditions.

Python (JAX) implementations of the models described
below are available on GitHub at slishak/cvsx.
2.1. Cardiovascular system model
The CVS has been minimally modelled as six compartments con-
nected in a closed loop by valves, resistances and optionally
inductances [14,22,32]. A schematic is given in figure 1. This
model has been widely applied in human and animal studies
[1]. It takes into account interaction between the ventricles
through the ventricular septum and the pericardium. There are
two models of valve dynamics that can be used: a simple non-
inertial check valve model which allows flow only during a
negative (decreasing) pressure gradient, and a more realistic
inertial model described as ‘open on pressure, close on flow’
which allows flow through the valve to continue due to the
fluid inertia even if the pressure gradient becomes positive
(increasing).

https://github.com/slishak/cvsx
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Figure 2. Example pressure–volume diagram for ventricular and septal walls (Vlvf, Vrvf, Vspt) over the cardiac cycle. © 2007 Elsevier Science & Technology Journals,
from [22]; permission for use conveyed through Copyright Clearance Center, Inc.

Table 1. Pressure–volume relationships for the non-inertial cardiovascular system [22], with modifications after Jallon [18] in brackets (which are not used in
any of the simulations below, but retained for reference). Ees is the contractility, Vd is the compartment dead-space, V0 is the volume at zero pressure, and P0
and λ are the gradient and curvature respectively for the EDPVR.

parameter (units) Ees (mmHg l
−1) Vd (l) V0 (l) λ (l−1) P0 (mmHg)

left ventricle free wall (lvf ) 3405 0.005 0.005 15 1.2751

right ventricle free wall (rvf ) 653 0.005 0.005 15 1.2001

septum free wall (spt) 48754 (3750) 0.002 0.002 435 (35) 1.1101

pericardium (pcd) — — 0.2 30 0.5003

vena cava (vc) 11.25 (2) 2.83 — — —

pulmonary artery (pa) 337.5 0.16 — — —

pulmonary vein (pu) 6 0.2 — — —

aorta (ao) 705 0.8 — — —
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The model is described in full detail below, as there are a few
cosmetic changes for readability compared with the referenced
works (conditional statements are used instead of equivalent
Heaviside functions). Each compartment’s volume is governed
by an ODE.
2.1.1. Single ventricle dynamics
The function of a ventricle in isolation is described by a PV dia-
gram, which shows how the PV relationship changes through the
cardiac cycle (figure 2). The two main characteristics are the end
systolic pressure–volume relationship (ESPVR) and the end
diastolic pressure–volume relationship (EDPVR). The ESPVR
represents the maximum elastance of the ventricle at the end
of systole (after contraction and ejection) and the EDPVR rep-
resents the minimum elastance during diastole (when the
ventricle is relaxed and filling). Nomenclature of all variables
and parameters in the equations below is given in tables 1 and
2, and all dimensional quantities are expressed in seconds,
litres and mmHg except for HR which is expressed in min−1

by convention.
In this model, the equations governing the ESPVR and

EDPVR, respectively, are given by

Pes,mðVmÞ ¼ Ees,mðVm � Vd,mÞ ð2:1Þ
and

Ped,mðVmÞ ¼ P0,mðelmðVm�V0,mÞ � 1Þ, ð2:2Þ
where the subscript m specifies the virtual volume in accordance
with the interactions between the ventricles and septum, as
described below in §2.1.2 [14]. The full PV relationship applying
to a ventricle, or time-varying elastance [33], is then given by

PmðVm, tÞ ¼ eðtÞPes,mðVmÞ þ ð1� eðtÞÞPed,mðVmÞ ð2:3Þ
where eðtÞ ¼
XN
i¼1

Ai e�Biððtmodð60=HRÞÞ�CiÞ2 : ð2:4Þ

The function e(t) (equation (2.4)) is known as the cardiac
driver function, which varies between 0 (diastole) and 1 (systole)
over each cardiac cycle and is continuous and periodic with
period 60/HR s; the multiplication by 60 is because HR is con-
ventionally expressed in beats per minute, but t has units of
seconds. A wide variety of such functions have been proposed,
with complexities ranging from simple sums of Gaussian terms
[34,35] to data based on invasive measurements of the CVS
[36]. The version presented in equation (2.4) is a clarified version
of that from Smith’s original model [14], with explicit modulo
wrapping of t [1]. Furthermore, note that when N = 1 (as com-
monly used), A1 = 1 to satisfy 0≤ e(t)≤ 1 and C1 = 30/HR s
(half a cardiac period) to satisfy continuity, leaving B1 and HR
as the only free parameters. A visualization of this choice of
e(t) is shown in the bottom left of figure 3. An extension to the
above to allow for variable HR is defined in §2.4.



Table 2. Other parameters for the non-inertial cardiovascular system [22],
with modifications after Jallon [18] in brackets.

parameter value

mitral valve resistance (Rmt) 0.45 mmHg s l−1

aortic valve resistance (Rav) 10.5 mmHg s l−1

tricuspid valve resistance (Rtc) 1.35 mmHg s l−1

pulmonary valve resistance (Rpv) 3.6 mmHg s l−1

pumonary circulation resistance (Rpul) 142.5 mmHg s l−1

systemic circulation resistance (Rsys) 1050 mmHg s l−1

heart rate (HR) 80 ð54Þ min�1

number of exponentials in cardiac driver (N) 1

cardiac driver scale (A1, Â1) 1

cardiac driver width (B1, B̂1) 80

cardiac driver offset (C1) 30=80 ð30=54Þ s
cardiac driver offset, variable HR (̂C1) 0.5

total blood volume (Vtot) 5.5 l

thoracic cavity pressure (Ppl) −4 mmHg
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2.1.2. Ventricular interaction
Due to the coupling between the two ventricles, rather than
simulate them individually with equation (2.3), three virtual
volumes are used: the left and right ventricle free wall volumes
(Vlvf and Vrvf ), and the septum free wall volume (Vspt). These
are related to the actual left/right ventricle volumes as shown
in figure 4 and equations (2.5) and (2.6) below. The pericardium
volume Vpcd is the sum of the left and right ventricle volumes, or
equivalently the sum of the ventricle free wall volumes (equation
(2.7)), thus

VlvfðtÞ ¼ VlvðtÞ � VsptðtÞ, ð2:5Þ
VrvfðtÞ ¼ VrvðtÞ þ VsptðtÞ ð2:6Þ

and VpcdðtÞ ¼ VlvðtÞ þ VrvðtÞ ¼ VlvfðtÞ þ VrvfðtÞ: ð2:7Þ

The corresponding pressures are then calculated with
equation (2.3) for m = lvf, rvf and spt, respectively. Because the
pericardium sits inside the thorax, the thoracic (pleural) pressure
Ppl is also applied (equation (2.8)), which is a constant in this
model (but later becomes time-varying in §2.2 when covering Jal-
lon’s model). Similarly, the ventricles sit inside the pericardium
so the pericardium pressure Pperi(t) is applied to equations
(2.9) and (2.10). The septal pressure is just the difference between
the left and right ventricle pressure (equation (2.11)). Hence,

PperiðtÞ ¼ PpcdðVpcdðtÞ, tÞ þ Ppl, ð2:8Þ
PlvðtÞ ¼ PlvfðVlvfðtÞ, tÞ þ PperiðtÞ, ð2:9Þ
PrvðtÞ ¼ PrvfðVrvfðtÞ, tÞ þ PperiðtÞ ð2:10Þ

and PsptðVsptðtÞ, tÞ ¼ PlvfðVlvfðtÞ, tÞ � PrvfðVrvfðtÞ, tÞ: ð2:11Þ

To complete the system of equations, the septum volume
Vspt(t) must be found such that equations (2.3), (2.5), (2.6) and
(2.11) are all satisfied. This does not have an analytic solution,
but can be solved using a nonlinear root-finder applied to the
resulting residual function,

f ðVsptÞ ¼ PlvfðVlvðtÞ � Vspt, tÞ
� PrvfðVrvðtÞ þ Vspt, tÞ � PsptðVspt, tÞ: ð2:12Þ

The gradient f 0(Vspt) is also simple to compute by autodifferentia-
tion or hand-calculation, which can be used for more efficient
optimization (for example, using the Newton–Raphson algor-
ithm). The uniqueness of the solution of f (Vspt) = 0 can be
verified by observing from equation (2.3) that dPm/dVm > 0 for
any set of physical (positive) parameter values, and therefore
that f 0(Vspt) is negative for any Vspt value (and so f (Vspt)
cannot cross zero more than once).

Note that linear approximations to the system above have
been proposed [18,37], but they have generally been found here
to be unnecessary if root finder is initialized with the solved
Vspt from the last accepted ODE step, as the Newton–Raphson
algorithm then converges to an acceptable tolerance within one
or two iterations. However, when trying to backpropagate gradi-
ents through the ODE solution [38], specialized solvers [31,39]
may be required. Furthermore, this backpropagation through a
nonlinear solver can represent an additional slowdown. With
this in mind, Jallon’s EDPVR linearization [18], given by

Ped,lin,sptðVÞ ¼ P0,sptlsptðV � V0,sptÞ, ð2:13Þ

replaces equation (2.2) only in the solution for Vspt, yielding
Vspt ¼
eðtÞðPes,lvfðVlvÞ � Pes,rvfðVrvÞ þ Ees,sptVd,sptÞþ ð1� eðtÞÞðPed,lin,lvfðVlvÞ�Ped,lin,rvfðVrvÞ þ lsptP0,sptV0,sptÞ

eðtÞðEes,lvf þ Ees,rvf þ Ees,sptÞþ ð1� eðtÞÞðllvfP0,lvf þ lrvfP0,rvf þ lsptP0,sptÞ , ð2:14Þ
the full form of which has not been explicitly given before. In
equation (2.14), the (t) argument has been hidden from Vspt(t),
Vlv(t) and Vrv(t) to reduce clutter. This optional linearization
can result in substantially different behaviour, shown later in
this paper.
2.1.3. Valve dynamics
Neglecting inertial effects, the equation for the instantaneous
flow rate Qv(t) induced within an internal vasculature v of resist-
ance Rv from an upstream pressure Pup,v(t) to a downstream
pressure Pdown,v(t) is given by

QvðtÞ ¼
Pup,vðtÞ � Pdown,vðtÞ

Rv
, ð2:15Þ

for v = pv, pul, mt, av, sys and tc, and the upstream/downstream
pressures correspond to those shown in figure 1 for vasculature
v. When a simple non-inertial valve is introduced, limiting the
flow through v to one direction only, a ramp function (equation
(2.17)) is applied to the flow rate such that it is never negative,

QvðtÞ ¼ r
Pup,vðtÞ � Pdown,vðtÞ

Rv

� �
ð2:16Þ

and

rðxÞ ¼ x, x � 0
0, otherwise:

�
ð2:17Þ

When considering inertia, the flow rate through a valve
becomes an ODE state, with a derivative function given by

dQv

dt
¼

Pup,vðtÞ�Pdown,vðtÞ�QvðtÞRv

Lv
,

QvðtÞ . 0 or
Pup,vðtÞ . Pdown,vðtÞ

0, otherwise

8<
: ð2:18Þ

where Lv is a constant inductance [40]. An ‘open on pressure,
close on flow’ valve law is used. Note that as long as Qv(0) is
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positive, in theory the valve law as stated should prevent the
flow rate ever becoming negative (as dQv/dt can never be nega-
tive when Qv(t) = 0), but in practice, the tolerances in ODE
solvers mean that there is typically some small constant negative
flow rate; this is quoted as typically being between −1 × 10−4

and −1 × 10−6 [37] but depends on the choice of ODE solver
used, the units of the states, and the error (step size) control.
The model as presented here is equivalent to the full Heaviside
formulation in [37].

Regardless of whether inertia is being considered, the rate of
change volume of a single chamber c is then described by
equation (2.19), assuming incompressible fluid: the rate of
change of volume (mass) in the chamber is equal to the net
inflow of volume (mass). To account for the tiny negative flow
rate that is possible when considering inertia (equation (2.18)),
the ramp function in equation (2.17) is used to prevent the
error propagating around the rest of the model (although it is
not strictly necessary with the non-inertial model, as it is already
applied in equation (2.15)),

dVc

dt
¼ rðQin,cÞ � rðQout,cÞ, ð2:19Þ

for c = rv, pa, pu, lv, ao and vc, and the flow rates in/out corre-
spond to those shown in figure 1 for compartment c.

The valve conditions shown in equations (2.17) and (2.18) are
also suitable for use with the event-handling capabilities of some
ODE solvers, by only switching from one branch to the other
when an exact zero crossing of the condition is found. As this
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is not currently supported by the chosen ODE solver [31], this
might be a future improvement, although the use of an adaptive
step ODE solver already achieves a low error around this
discontinuity [37,41].
2.1.4. Full closed-loop model
The final model is formed by setting the flow rate out of each
compartment in figure 1 equal to the flow rate into the next com-
partment. The implementation used to generate the results below
is almost the same as [1,37] but with the pleural pressure Ppl

applied to the pulmonary vein and artery pressures Ppa and
Ppu [18].

The total blood volume,

VtotðtÞ ¼ VpaðtÞ þ VpuðtÞ þ VlvðtÞ þ VaoðtÞ þ VvcðtÞ þ VrvðtÞ,
ð2:20Þ

is conserved throughout the simulation, as it is a closed
fluid flow system. The initial individual compartment volumes
are less important, as they will not affect the asymptotic
behaviour of the system as long as they are feasible. Stable
initial compartment volumes can be found manually by
running the model from a reasonable starting point (e.g.
tables 6 or 7) and recording a set of state values from the
orbit that the model converges to. Some other possible
approaches are discussed in [29]. Initial flow rates for the inertial
model can be found using equation (2.15) (i.e. assuming
zero inertia).
2.2. Combining respiratory and cardiovascular models
The CVS model presented above stabilizes to periodic behaviour,
with every heartbeat exhibiting the same dynamics. However,
in reality, the pleural pressure Ppl is not constant but varies
with the respiratory rate, which (among many other factors)
causes beat-to-beat variation in the cardiovascular dynamics. In
Jallon’s heart-lung model [18], the respiratory rate is controlled
by the central respiratory pattern generator, which is based on
the Liènard system [42] shown in equation (2.23); the system of
ODEs then defined by

dx
dt

¼ a f (xðtÞ, yðtÞ)�HB
dValv

dt

� �
, ð2:21Þ

dy
dt

¼ axðtÞ ð2:22Þ

and f ðx, yÞ ¼ ðay2 þ byÞðxþ yÞ: ð2:23Þ

can be simulated, where x(t) is a hidden variable and y(t) is the
pattern. Valv(t) is a state of the respiratory model (equation
(2.28)). The term HB(dValv/dt) refers to the Hering–Breuer
reflex [43,44] which is meant to prevent over-inflation of the
lungs.

The respiratory muscle pressure Pmus(t) is then simulated fol-
lowing equation (2.24), where λ and μ are (non-physical)
parameters,

dPmus

dt
¼ lyðtÞ þ m: ð2:24Þ

The states y(t) and Pmus(t) from the above system of equations
feed into the passive mechanical respiratory system model,
which is unchanged from [18] (except for the movement of the
Pmus state to the central respiratory pattern generator model).
The equations are defined below where Vbth(t) (equation (2.25))
is the intrathoracic blood volume, and Valv(t) is the alveolar
volume. The pleural pressure is given by equation (2.27). One
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more state is introduced, Valv(t), with a derivative defined by
equation (2.28),

VbthðtÞ ¼ VpcdðtÞ þ VpuðtÞ þ VpaðtÞ, ð2:25Þ
VthðtÞ ¼ VbthðtÞ þ ValvðtÞ, ð2:26Þ

PplðtÞ ¼ PmusðtÞ þ EcwðVthðtÞ � Vth,0Þ ð2:27Þ

and
dValv

dt
¼ �PplðtÞ þ EalvValvðtÞ

Rca þ Rua
: ð2:28Þ

The full respiratory/cardiovascular model can be simulated
as a system of ODEs, constructing a right-hand side function
defining the state derivatives using the following procedure
(after setting appropriate initial conditions and parameter
values, discussed in §2.5):

(i) receive time t and states (CVS volumes and flow rates,
x(t), y(t), Pmus(t) and Valv(t)),

(ii) call the respiratory system model (equations (2.25)–(2.28)),
yielding dValv/dt,

(iii) call the respiratory pattern generator (equations
(2.21)–(2.23)), yielding dx/dt, dy/dt and dPmus/dt,

(iv) call the CVS model (§2.1) with Ppl(t) from equation (2.27)
used in equation (2.8), thus obtaining all remaining state
derivatives.

2.3. Correcting and stabilizing the respiratory model
Equation (2.24) in §2.2 has been found to cause a gradual drift
of Pmus over time, resulting in long-term instability of the
solution and unbounded increase or decrease in alveolar volume
Valv. This is visible in Jallon’s original paper (figure 5) and is
also possibly the cause of issues from other referenced uses of
this model [45]. A later paper from the same author introduces
a slightly modified central respiratory pattern generator
model, but this is understood to be a simplification in order to
simulate a specific phenomenon rather than a general model
improvement (and parameter unit inconsistencies further confuse
the matter) [46].

Although equation (2.21) contains a term that supposedly
prevents over-inflation of the lungs through the Hering–
Breuer reflex, the justification for this implementation is
unclear (an increase in Valv acts to decrease the third derivative
of Pmus). Although these reflexes were historically thought
to play a significant role in the regulation of ventilation, they
are now understood to be largely inactive in adult humans
(except while exercising), although there is some evidence
that they may be more important in newborn babies [47].
Regardless, as the respiratory pattern generator is only required
to synthesize realistic behaviour for Pmus, there is little need for
the complication of trying to mimic regulatory systems in the
model (and furthermore, no clear reason for implementing just
one element of a complicated control system).

Below, a modification is proposed to add an extra term to
essentially perform integral feedback control (a type of pro-
portional-integral-derivative or PID control [48]) on Pmus,
introducing a new parameter β in equation (2.29) (replacing
equation (2.24)) which stabilizes the solution for small positive
β (for example, β = 0.1 s−1). As this acts to prevent Pmus and
Valv steadily increasing or decreasing over time, the attempt to
implement the Hering–Breuer reflex in equation (2.21) can be
discarded (replacing it with equation (2.30)), thus

dPmus

dt
¼ lyðtÞ þ m� bPmusðtÞ ð2:29Þ

and

dx
dt

¼ af ðxðtÞ, yðtÞÞ: ð2:30Þ
2.4. Extending model to variable heart rates
Here, an original modification to the CVS model in §2.1 is dis-
cussed. The HR enters only as a fixed parameter in equation
(2.4); if the model were to simulate intensive care unit (ICU)
patient data, it would need to be able to have the HR varying
with time, as this is an important feature of the physiology of
patients suffering from multiple pathologies. This can be
achieved by introducing another auxiliary state s(t) with a
derivative defined by equation (2.31). The function HR(t) is an
arbitrarily defined function of time; it could be a function
which interpolates measured patient HR values, or an unknown
function to be learnt. The state s(t) is then the count of cardiac
cycles since the model was initialized (with s(0) = 0), and sw(t)
varies between 0 and 1 throughout each cardiac cycle.1 Equation
(2.4) is then replaced with equation (2.33), as long as the par-
ameters Âi, B̂i, Ĉi are tuned for a cardiac period of 1 s. Note
that this transformation is not limited to just sums of exponen-
tials: the same technique could be used to transform any
arbitrary constant HR e(t) into a variable HR e(sw). The new
HR model is then given by

ds
dt

¼ HRðtÞ
60

, ð2:31Þ
swðtÞ ¼ sðtÞ mod 1 ð2:32Þ

and eðswÞ ¼
XN
i¼1

Âie�B̂iðsw�ĈiÞ2 : ð2:33Þ



Table 3. Pressure–volume relationships for the inertial cardiovascular system [1]. Parameters marked with (*) differ from the source, for reasons explained in
the main text.

parameter Ees (mmHg l
−1) Vd (l) V0 (l) λ (1/l) P0 (mmHg)

left ventricle free wall (lvf ) 2879.8 0 0 33 0.1203

right ventricle free wall (rvf ) 585 0 0 23 0.2157

septum free wall (spt) 48 754 0.002 0.002 435 1.1101

pericardium (pcd) — — 0.2 30 0.5003

vena cava (vc) 5.9 0 — — —

pulmonary artery (pa) 369 0 — — —

pulmonary vein (pu) 7.3 0 — — —

aorta (ao) 691.3 (*) 0 — — —

Table 4. Other parameters for the inertial cardiovascular system [1].
Parameters marked with (*) differ from the source, for reasons explained in
the main text. The cardiac driver and thoracic pressure parameters are as
table 2.

parameter value

mitral valve (Rmt, Lmt) 15.8 mmHg s l−1, 7.6968 × 10−2

mmHg s2 l−1

aortic valve (Rav, Lav) 18 mmHg s l−1, 1.2189 × 10−1

mmHg s2 l−1

tricuspid valve (Rtc, Ltc) 23.7 mmHg s l−1, 8.0093 × 10−2

mmHg s2 l−1

pulmonary valve (Rpv, Lpv) 5.5 mmHg s l−1, 1.4868 × 10−1

mmHg s2 l−1

pumonary circulation

resistance (Rpul)

155.2 mmHg s l−1 (*)

systemic circulation

resistance (Rsys)

1088.9 mmHg s l−1 (*)

total blood volume (Vtot) 1.5 l (*)

Table 5. Parameters for respiratory model [18]. Note that Rua, Rca and Vth,
0 are given with incorrect units in the original paper, and HB, λ and μ are
given with no units. The parameter β is introduced in §2.3. Bear in mind
that the Liènard system parameters are distinct from the similarly named
Ai, Bi in the cardiac driver function.

parameter value

alveolar elastance (Ealv) 3.678 mmHg l−1

chest wall elastance (Ecw) 2.942 mmHg l−1

upper airways resistance (Rua) 3.678 mmHg s l−1

central airways resistance (Rca) 0.7356 mmHg s l−1

intrathoracic volume at zero pressure (Vth, 0) 2 l

Hering–Breuer reflex constant (HB) 1 l−1

gain on Liènard output in Pmus derivative (λ) 1.5 mmHg s−1

derivative offset for Pmus (μ) 1 mmHg s−1

integral control gain on Pmus (β) 0.1 s−1

Liènard system parameter (a) −0.8
Liènard system parameter (b) −3

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230339

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 O

ct
ob

er
 2

02
3 
2.5. Model parameters and initial conditions
Full parametrizations for all biophysical models are included in
tables 1 to 5. As detailed below, the parametrization is taken
from previously published works, except where they are believed
to be erroneous, as the contribution of this work is methodologi-
cal in nature and does not depend on any specific novel
parametrization. All parameters are converted into consistent
units of pressure (mmHg) and volume (litres).

Complete and accurate parameter listings for the inertial car-
diovascular model are rare in the existing published literature
due to the challenges of in situ measurement and variations
across animal models, species etc. One useful source is [1], but
with a few necessary modifications: the given value for Eao is
0, which is assumed to be a mistake as it results in non-physical
behaviour, and Rpul and Rsys are missing. The values in tables 3
and 4 came from a later PhD thesis [49]. Furthermore, the refer-
enced value of the offset parameter Ci in the cardiac driver
function (equation (2.4)) appears to be incorrect, as setting it to
anything other than half the cardiac cycle duration results in a
discontinuity at the end of the cycle. Finally, Vtot is described
as 5.5 l in the referenced source, but due to the low total dead-
space volume in table 3, this results in non-physical behaviour,
therefore a stressed blood volume of 1.5 l is assumed (and the
model ignores the 4 l of dead space). Another solution would
have been to restore the dead space in the PV compartments,
which sum to 4 l (excluding the virtual septum volume).

Table 5 gives Jallon’s parameters for the respiratory model. In
tables 1 and 2, there are some alternative parameter values pro-
vided by Jallon [18] in brackets which reduce the stiffness of the
septum; these are described as being necessary to achieve reason-
able physiological values for all variables. However, no physical
justification was made for this change, and they cause the ventri-
cle PV loops (figure 2) to lose their shape completely. As a result,
these parameters are not used in the simulations.

All initial state values are given in tables 6, 7 and 8. The
initial compartment volumes must sum to Vtot (and this is the
only place the parameter is used). Apart from this, the asympto-
tic behaviour of the model does not depend on the individual
initial volumes, as long as they are sensible. The closer the initi-
alization is to the asymptotic behaviour, the shorter the initial
transient period will be. Alternatively, initialization could be
performed by an optimization procedure [29].

The models were simulated using Diffrax [31] with the
Tsit5 solver, frequently recommended as a good general-
purpose ODE solver [31,50,51]. Adaptive step sizing was used,
with the default proportional error control; this is important



Table 6. Initial volumes for non-inertial cardiovascular system model
parametrized by tables 1 and 2.

state initial value (l)

pulmonary artery volume (Vpa) 0.187

pulmonary vein volume (Vpu) 0.902

left ventricle volume (Vlv) 0.1375

right ventricle volume (Vrv) 0.132

aorta volume (Vao) 0.9515

vena cava volume (Vvc) 3.190

Table 7. Initial volumes for inertial cardiovascular system model
parametrized by tables 3 and 4. Initial flow rates can be calculated using
equation (2.15). Note that the unstressed blood volume is not considered
in this parametrization.

state initial value (l)

pulmonary artery volume (Vpa) 0.043

pulmonary vein volume (Vpu) 0.808

left ventricle volume (Vlv) 0.095

right ventricle volume (Vrv) 0.091

aorta volume (Vao) 0.133

vena cava volume (Vvc) 0.330

Table 8. Initial volume ratios for respiratory model parametrized by
table 5. The Liènard system states are both dimensionless.

state initial value

Liènard system state (x) −0.6
Liènard system state (y) 0

respiratory muscular pressure (Pmus) 0 mmHg
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due to the discontinuities introduced by the valves, which
require a smaller step size to resolve than the rest of the solution.
The absolute tolerance was set to 10−7 as the unwanted negative
flow rates described in §2.1.3 were found to respond linearly to
this with a gain of roughly 100, giving typical values of
around −10−5 1 s−1. The relative tolerance was set to 10−4, as
with the default setting of 10−3, the interpolated dense solution
for the non-inertial model was noticeably inaccurate around
the closing of the pulmonary and aortic valves, with oscillating
flow rates between ODE steps.
3. Results
Results of simulating the various models presented in §2 are
shown below. The dense ODE solution is interpolated onto a
regular grid, so that a maximum step size does not need to be
set just for visualization purposes. States were expressed in
units of litres (but converted to millilitres for plotting), and
pressures were calculated in mmHg. Figure 3 shows two
seconds of simulation for the inertial and non-inertial Smith
CVS models with ventricular interaction, using parameters
from tables 3 and 4 in both cases. No previous published
comparison of these two models with matching parameters
has been found. In the upper right corner of the PV diagram,
the inertial model is less rounded due to the sharper ejection
profile, which is also visible in Qav and Qpv. Other than this,
both models are very similar; in particular, the septum devi-
ation volume Vspt is almost unaffected.

Figure 6 shows the behaviour of the Jallon heart-lung
model presented in §2.2 [18]. Following the original
implementation, the linearization of Vspt is used, although
the suggested parameter modifications (such as reducing
the stiffness of the septum) were discarded, as explained in
§2.5. The behaviour matches expectations, with left ventricle
stroke volume decreasing during inspiration and increasing
during expiration, and vice versa for the right ventricle. How-
ever, a gradual drift in almost all outputs can be seen, due to
a growth of Pmus over time.

Figure 7 gives a clear comparison of the effects of Jallon’s
linearization of the ventricular interaction. Although the
linearization has little influence on the numerical results
during periods of static pleural pressure (or when the lungs
are mostly exhaled), there is a noticeable difference during
diastole immediately after inhalation. The full nonlinear
model suggests a substantial septal deflection into the left
ventricle in this situation, but the linearized model does not
show this.

The results of the correction proposed in §2.3 that intends
to stabilize Jallon’s respiratory model are shown in figure 8,
confirming that there is no longer any drift over time. The
HB parameter has been set to zero as the reflex has been
accounted for by setting β = 0.1. The linearized ventricular
interaction model was retained for a direct comparison
against the original model.

Figure 9 shows the results of the inertial Smith model
with the variable HR extension proposed in §2.4. As the
HR gradually increases from 60 up to 100, following

HRðtÞ ¼ 80þ 20 tanh ð0:3ðt� 20ÞÞ, ð3:1Þ
the peak flow rates through the aortic and pulmonary valves
increase, and systolic/diastolic arterial pressures all increase
substantially. The full nonlinear Vspt solver (using equation
(2.12)) was used in this simulation.

Table 9 shows the computation time achieved in JAX for
each of the model configurations simulated.
4. Discussion
It is difficult to evaluate the accuracy of the results presented
in §3 in comparison with the published versions, due to the
lack of provided code and occasionally insufficient descrip-
tions of the parameters. However, qualitative comparison
with the available plots suggests that all models were cor-
rectly reproduced. Upon inhalation, right ventricle stroke
volume increases and left ventricle decreases, as expected.

TheVspt linearizationdefined byequation (2.14) had amuch
larger than expected effect on the Vspt trace when combined
with the Jallonmodel.During inspiration, it results in a substan-
tial under-prediction of septal deflection comparedwith the full
nonlinear model. Recall that the linearization is motivated by
computational efficiency rather than accuracy, so regardless of
which is more physically accurate, the intention of the model
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has been substantially affected. However, the criteria that the
Vspt variation should be around 4% of the ventricle, quoted in
Smith’s original work [14,34], is no longer met in the Jallon
model with nonlinear ventricular interaction, and the right
ventricle expands notably. If the septal elasticity were further
reduced, as suggested by Jallon, this effect would be even
more pronounced.

The computational advantages of the linearized ventricular
interaction were found here to be limited. In an earlier
PyTorch implementation, the nonlinear Newton–Raphson
solver already converged within one or two iterations when
initialized to the value of the last accepted ODE step (so the
improvement was negligible). In the final JAX implementation,
varying the initial guess was not found to be possible. Despite
this, even though the linearization resulted in a speed-up of
over three times, the model was already capable of simulating
one second of activity in under 1ms. However, the lineariza-
tion may be useful in a parameter estimation setting where
the simulation might need to be iterated, and the backwards
pass may also be sped up with the linearization.

Themodificationproposed in §2.3 to stabilize the respiratory
model is considered to be successful, and is necessary for long-
term simulations of the Jallon model. The modification does not
affect the physical relevance of the model, as it only slightly
adjusts the use of the Liènard system as a signal generator.

The variable HR model proposed in §2.4 also works as
intended, allowing for ICU HR data to be fed directly into
the CVS models. This change would be useful when perform-
ing parameter estimation on long periods of patient data, as it
provides an alternative to the beat-to-beat approach [52]. On
the other hand, the physiological relevance of the model
results remain to be verified. Figure 9 suggests that when
the HR increases, the diastolic aortic pressure should notice-
ably increase, with the systolic pressure also increasing but at
a shallower rate. However, studies on patients fitted with
pacemakers suggest that in humans, although the diastolic
aortic pressure does indeed increase when the HR is artifi-
cially raised (as do peripheral systolic and diastolic arterial
pressures), the systolic aortic pressure does not increase
[53,54]. This effect is understood to be due to wave reflection
and change in systemic arterial stiffness, mechanisms that are
not simulated within this model framework. Such neglected
aspects go some way to explaining the difference in
behaviour between the model and experimental results.
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There are a wide range of mechanisms for the autonomous
regulation of blood pressure [55] that are not considered by
this model. Furthermore, an assumption is (most likely incor-
rectly) made that the length of systole as a proportion of the
cardiac period does not change with HR, even when the driv-
ing pulse (equation (2.33)) is squashed or stretched in time
depending on the rate of change of sw(t). Finally, the shape
of the cardiac driver function used within this model is extre-
mely simplistic, being defined by a single parameter alone (B̂1).
It would in theory be possible to redefine this parameter to be
a function of HR; this approach could also be extended to
more complicated driver functions [34–36,56].

Although it is not demonstrated in this work, the use of an
ODE solver that supports autodifferentiation may permit the
parameters to be learned directly by minimizing a loss versus
clinically measured patient-specific blood pressure and HR
data. Furthermore, it could lead to a grey-box model that com-
bines human-designed models of the CVS with regulated
variables such as HR, elastances and resistances implemented
as unknown functions (of time and/or state variables) to be
learned, for example neural ODEs [38]. Such models would
be valuable as they could estimate information about a patient
that would be infeasible or overly intrusive tomeasure directly.
In particular, this approach of combining a simple model with
learned functionswould address the issue of increasingly com-
plex models having many unknown physiological parameters
which cannot be uniquely identified from commonly available
patient data. In conjunction with real-time data available in
an ICU, this could provide vital extra information when
making important decisions on treatments.
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5. Conclusion
Two novel modifications to the CVS models of Smith [14]
and Jallon [18] were proposed: a correction to stabilize
Jallon’s model (§2.3) and an extension to allow all models to
simulate a variable HR (§2.4). Both modifications work as
intended and significantly extend the capabilities of Smith’s
original model.

The stabilization of the Jallon model is crucial to enable
realistic simulation of, and parameter estimation from, phys-
iological behaviour over clinically relevant time scales,
and supersedes the previous attempt to incorporate the
Hering–Breur reflex into the original model.
The novel approach to simulating variable HR, although
applied here on a very simple model and basic cardiac
driver function, has also been successful. However, the
model suggests an increase in central systolic arterial pressure
with increasing HR, which is not in agreement with available
experimental data. It is postulated that this discrepancy may
be due to the model neglecting the effects of pressure wave
reflection and changes in systemic arterial stiffness with
HR. On the other hand, the extension is generalizable to
many other ODE models of the CVS, so a similar modifi-
cation to a more complicated original model might yield
more accurate results. For example, the CircAdapt [26]
model might also be extended in this manner.



Table 9. Computation time in JAX for 60 s of simulation (not including
compilation time), averaged over 10 runs. Run on an AMD Ryzen 7 5800H
CPU in Windows Subsystem for Linux. Linear/nonlinear refers to ventricular
interaction; the Jallon model is always non-inertial. The compiled-in max
number of steps in Diffrax was set to 164.

configuration computation time steps

Smith non-inertial 58 ms 6000

Smith inertial 110 ms 19 927

Smith non-inertial,

variable HR

67 ms 6307

Jallon (linear) 16 ms 7062

Jallon (nonlinear) 64 ms 7060

Jallon (linear, stabilized) 16 ms 6982
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With the HR defined by an arbitrary function of time, the
model is no longer limited to periodic behaviour. In conjunc-
tion with the support for autodifferentiation due to the
implementation in JAX, this leads to further opportunities
for applying the CVS model in conjunction with machine-
learning techniques to measured bio-signals from patients,
especially when considering the high computational cost of
parameter estimation with models which do not support
differentiation and have higher parameter counts [57].
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Endnote
1This could also be achieved using an ODE event solver, detecting the
event s(te) = 1 and resetting s(te) := 0 before continuing, therefore
having sw(t) = s(t) instead of equation (2.32). This would be preferable
if having an ODE state that grows indefinitely with time is undesir-
able, for example as the error of s(t) can be better controlled using a
relative tolerance if the magnitude of s(t) is bounded, or that if the
model were used as a patient’s ‘digital twin’, the precision of s(t)
would degrade over long periods of time due to floating point
representation.
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