22 research outputs found

    Cluster analysis identifies unmet healthcare needs among patients with rheumatoid arthritis

    Get PDF
    Objective: To identify the patterns of healthcare resource utilization and unmet needs of persistent disease activity, pain, and physical disability in rheumatoid arthritis (RA) by cluster analysis. Method: Patients attending the Jyvaskyla Central Hospital rheumatology unit, Finland, were, from 2007, prospectively enrolled in a clinical database. We identified all RA patients in 2010-2014 and combined their individual-level data with well-recorded administrative data on all public healthcare contacts in fiscal year 2014. We ran agglomerative hierarchical clustering (Ward's method), with 28-joint Disease Activity Score with three variables, Health Assessment Questionnaire index, pain (visual analogue scale 0-100), and total annual health service-related direct costs (euro) as clustering variables. Results: Complete-case analysis of 939 patients derived four clusters. Cluster C1 (remission and low costs, 550 patients) comprised relatively young patients with low costs, low disease activity, and minimal disability. C2 (chronic pain, disability, and fatigue, 269 patients) included those with the highest pain and fatigue levels, and disability was fairly common. C3 (inflammation, 97 patients) had rather high mean costs and the highest average disease activity, but lower average levels of pain and less disability than C2, highlighting the impact of effective treatment. C4 (comorbidities and high costs, 23 patients) was characterized by exceptionally high costs incurred by comorbidities. Conclusions: The majority of RA patients had favourable outcomes and low costs. However, a large group of patients was distinguished by chronic pain, disability, and fatigue not unambiguously linked to disease activity. The highest healthcare costs were linked to high disease activity or comorbidities.Peer reviewe

    Time-resolved classification of dog brain signals reveals early processing of faces, species and emotion

    Get PDF
    Dogs process faces and emotional expressions much like humans, but the time windows important for face processing in dogs are largely unknown. By combining our non-invasive electroencephalography (EEG) protocol on dogs with machine-learning algorithms, we show category-specific dog brain responses to pictures of human and dog facial expressions, objects, and phase-scrambled faces. We trained a support vector machine classifier with spatiotemporal EEG data to discriminate between responses to pairs of images. The classification accuracy was highest for humans or dogs vs. scrambled images, with most informative time intervals of 100-140 ms and 240-280 ms. We also detected a response sensitive to threatening dog faces at 30-40 ms; generally, responses differentiating emotional expressions were found at 130-170 ms, and differentiation of faces from objects occurred at 120-130 ms. The cortical sources underlying the highest-amplitude EEG signals were localized to the dog visual cortex.Peer reviewe

    Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing

    Get PDF
    Long interspersed nuclear elements-1 (L1s) are a large family of retrotransposons. Retrotransposons are repetitive sequences that are capable of autonomous mobility via a copy-and-paste mechanism. In most copy events, only the L1 sequence is inserted, however, they can also mobilize the flanking non-repetitive region by a process known as 3' transduction. L1 insertions can contribute to genome plasticity and cause potentially tumorigenic genomic instability. However, detecting the activity of a particular source L1 and identifying new insertions stemming from it is a challenging task with current methodological approaches. We developed a long-distance inverse PCR (LDI-PCR) based approach to monitor the mobility of active L1 elements based on their 3' transduction activity. LDI-PCR requires no prior knowledge of the insertion target region. By applying LDI-PCR in conjunction with Nanopore sequencing (Oxford Nanopore Technologies) on one L1 reported to be particularly active in human cancer genomes, we detected 14 out of 15 3' transductions previously identified by whole genome sequencing in two different colorectal tumour samples. In addition we discovered 25 novel highly subclonal insertions. Furthermore, the long sequencing reads produced by LDI-PCR/Nanopore sequencing enabled the identification of both the 5' and 3' junctions and revealed detailed insertion sequence information.Peer reviewe

    Muovien haitalliset ympäristö- ja terveysvaikutukset

    Get PDF
    Muoveja päätyy ympäristöön useista lähteistä. Etenkin kevyet muovit voivat kulkeutua kauas alkuperäisiltä päästölähteiltään. Muovit voivat kuljettaa mukanaan mm. vieraslajeja, taudinaiheuttajia sekä haitallisia yhdisteitä. Muoveja pääsee ympäristöön kaikista muovin elinkaaren vaiheista, mutta yksi merkittävimmistä päästölähteistä on elinkaaren loppupäässä muodostuvat roskat. Muovit ovat ympäristössä erittäin pysyviä. Suurikokoiset muovit voivat pilkkoutua edelleen pienemmiksi muodostaen mikromuoveja, jotka pienen kokonsa vuoksi kulkeutuvat helpommin eliöihin. Ympäristöön päädyttyään muovit voivat aiheuttaa monenlaisia vaikutuksia. Vesiympäristössä suurikokoisten muovien tunnetuimmat haitat ovat eliöiden takertuminen niihin sekä muovikappaleiden syömisestä aiheutuvat ongelmat. Maaekosysteemien osalta tietoa muovien vaikutuksista on varsin vähän. Nykytiedon valossa näyttäisi siltä, että vaikutukset ovat samansuuntaisia vesiympäristön kanssa. Mikromuovien on todettu puolestaan vaikuttavan haitallisesti useisiin eri ravintoverkon tasojen eliöihin. Vesiympäristössä monien eri lajien on havaittu altistuvan mikromuovihiukkasille. Eliöihin kulkeutuneet mikromuovit voivat aiheuttaa niissä hyvin monen tyyppisiä haittavaikutuksia. Maaympäristössä maaperäeläimet voivat myös toimia mikromuovien reittinä maanpäälliseen ravintoverkkoon. Ihmiset altistuvat mikromuoveille päivittäin ravinnon, sisä- ja ulkoilman sekä ihon kautta, mutta altistumisen määrää ja sen mahdollisia vaikutuksia terveyteen ei tarkkaan tunneta. Koe-eläimillä ja solumalleilla tehdyissä tutkimuksissa on saatu viitteitä haitallisista vaikutuksista, mutta näissä tutkimuksissa käytetyt suuret annosmäärät ja tasalaatuiset muovilajit eivät vastaa ihmisten tavanomaista altistumista. Vaikka näyttö terveysvaikutuksista on vähäistä, kansainväliset tiedejärjestöt ovat arvioineet, että mikromuovialtistus on tällä hetkellä niin pientä, että siitä ei aiheudu merkittävää riskiä ihmisten terveydelle. Tilanne voi kuitenkin muuttua ympäristön mikromuovisaastemäärän kasvaessa. Lisää tietoa tarvitaan erityisesti nanokokoisten muovihiukkasten käyttäytymisestä elimistössä, pienten lasten altistumisesta, mahdollisista suolistovaikutuksista sekä pitkäaikaisen elimistöön kertymisen seurauksista. Jätteen synnyn ehkäisy ja kiertotalouden optimointi on tärkeää muovien aiheuttamien ympäristövaikutusten pitämiseksi mahdollisimman pieninä. Vuonna 2018 laadittu Muovitiekartta on esittänyt useita toimenpide-ehdotuksia muovien käytön vähentämiseksi, korvaamiseksi sekä kierrätyksen tehostamiseksi. Ekologisesti kestävä ja turvallisuusnäkökulmat huomioiva tuotesuunnittelu on osaltaan avainasemassa muovien ilmasto- ja ympäristöpäästöjen vähentämisessä. Vaikka muoveja ja niiden vaikutuksiin kohdistuvaa sääntelyä on viime vuosina lisätty, on puutteita edelleen havaittavissa. Ensisijaisena hallintakeinona voidaan kuitenkin nähdä muovien ympäristöpäästöjen estäminen. Eräs keskeinen ongelma kuitenkin on, että suoria ohjauskeinoja sekundääristen mikromuovien syntymisen ehkäisemiseksi ei ole. Muovin ollessa edelleen keskeisessä roolissa useissa yhteiskunnan toiminnoissa, tarvitaan jatkossa edelleen monen tasoisia hallintakeinoja muovien aiheuttamien ympäristö- ja terveysvaikutusten vähentämiseksi.Adverse environmental and health effects of plastics Plastic enters the environment from various emission sources. In particular, light plastics may be transported long distances from their original emission sources. Plastics may also carry alien species, pathogens, and hazardous substances. Plastics are released into the environment from all stages of their life cycle, but one of the most significant sources is plastic waste generated at the end of the life cycle. In the environment plastics are extremely persistent. Large plastics items can be further broken down into smaller pieces which, due to their small size, are more easily transported into organisms. Once released into the environment, plastics may have a wide range of various impacts. In an aquatic environment, the most common disadvantages of large plastics are the tangling of organisms in them, and the problems caused by organisms eating plastic pieces. There is a lack of information on the impacts of plastics on terrestrial ecosystems. However, according to the information available the impacts on the terrestrial environment seem to be quite parallel to the aquatic environment. Microplastics have been found to have adverse impacts on several organisms at different trophic levels. In an aquatic environment various species have been found to be exposed to microplastic particles. Microplastics introduced into organisms can cause many types of unwanted side effects. In a terrestrial environment, soil animals can also act as a pathway for microplastics into the terrestrial food web. Humans are exposed to microplastics on a daily basis through food, indoor and outdoor air, and the skin, but the extent of the exposure and its potential effects on health are not well known. Laboratory studies in animals and cell models have shown evidence of adverse effects, but the high doses and uniform plastic types used in these studies do not correspond to normal human exposure. Even though the evidence for health effects is limited, international scientific community has estimated that microplastic exposure is currently so low that it does not pose a significant risk to human health. However, the situation may change as the amount of microplastic pollution in the environment keep increasing. More information is required, especially on the behavior of nanosized plastic particles in the human body, the exposure of young children to plastics, the possible intestinal effects and the consequences of long-term accumulation. Waste prevention and optimizing the circular economy are important ways to minimize the environmental impact of plastics. The Plastic Roadmap launched in 2018 has set several proposals for measures to reduce and replace plastic use and to increase the efficiency of recycling. Ecologically sustainable product design that also takes into account safety perspectives plays a key role in reducing climate and environmental emissions from plastics. Although the legislation and regulative measures of plastics and their impacts has increased in recent years, shortcomings still remain. The prevention of plastic emissions to the environment can be seen as a primary control measure. One key problem, however, is that there are no direct control methods to prevent secondary plastics emissions. As plastic keeps playing a key role in many activities in society, multi-level management measures are still required to reduce the environmental and health impacts of plastics

    Muovien haitalliset ympäristö- ja terveysvaikutukset

    Get PDF
    Muoveja päätyy ympäristöön useista lähteistä. Etenkin kevyet muovit voivat kulkeutua kauas alkuperäisiltä päästölähteiltään. Muovit voivat kuljettaa mukanaan mm. vieraslajeja, taudinaiheuttajia sekä haitallisia yhdisteitä. Muoveja pääsee ympäristöön kaikista muovin elinkaaren vaiheista, mutta yksi merkittävimmistä päästölähteistä on elinkaaren loppupäässä muodostuvat roskat. Muovit ovat ympäristössä erittäin pysyviä. Suurikokoiset muovit voivat pilkkoutua edelleen pienemmiksi muodostaen mikromuoveja, jotka pienen kokonsa vuoksi kulkeutuvat helpommin eliöihin. Ympäristöön päädyttyään muovit voivat aiheuttaa monenlaisia vaikutuksia. Vesiympäristössä suurikokoisten muovien tunnetuimmat haitat ovat eliöiden takertuminen niihin sekä muovikappaleiden syömisestä aiheutuvat ongelmat. Maaekosysteemien osalta tietoa muovien vaikutuksista on varsin vähän. Nykytiedon valossa näyttäisi siltä, että vaikutukset ovat samansuuntaisia vesiympäristön kanssa. Mikromuovien on todettu puolestaan vaikuttavan haitallisesti useisiin eri ravintoverkon tasojen eliöihin. Vesiympäristössä monien eri lajien on havaittu altistuvan mikromuovihiukkasille. Eliöihin kulkeutuneet mikromuovit voivat aiheuttaa niissä hyvin monen tyyppisiä haittavaikutuksia. Maaympäristössä maaperäeläimet voivat myös toimia mikromuovien reittinä maanpäälliseen ravintoverkkoon. Ihmiset altistuvat mikromuoveille päivittäin ravinnon, sisä- ja ulkoilman sekä ihon kautta, mutta altistumisen määrää ja sen mahdollisia vaikutuksia terveyteen ei tarkkaan tunneta. Koe-eläimillä ja solumalleilla tehdyissä tutkimuksissa on saatu viitteitä haitallisista vaikutuksista, mutta näissä tutkimuksissa käytetyt suuret annosmäärät ja tasalaatuiset muovilajit eivät vastaa ihmisten tavanomaista altistumista. Vaikka näyttö terveysvaikutuksista on vähäistä, kansainväliset tiedejärjestöt ovat arvioineet, että mikromuovialtistus on tällä hetkellä niin pientä, että siitä ei aiheudu merkittävää riskiä ihmisten terveydelle. Tilanne voi kuitenkin muuttua ympäristön mikromuovisaastemäärän kasvaessa. Lisää tietoa tarvitaan erityisesti nanokokoisten muovihiukkasten käyttäytymisestä elimistössä, pienten lasten altistumisesta, mahdollisista suolistovaikutuksista sekä pitkäaikaisen elimistöön kertymisen seurauksista. Jätteen synnyn ehkäisy ja kiertotalouden optimointi on tärkeää muovien aiheuttamien ympäristövaikutusten pitämiseksi mahdollisimman pieninä. Vuonna 2018 laadittu Muovitiekartta on esittänyt useita toimenpide-ehdotuksia muovien käytön vähentämiseksi, korvaamiseksi sekä kierrätyksen tehostamiseksi. Ekologisesti kestävä ja turvallisuusnäkökulmat huomioiva tuotesuunnittelu on osaltaan avainasemassa muovien ilmasto- ja ympäristöpäästöjen vähentämisessä. Vaikka muoveja ja niiden vaikutuksiin kohdistuvaa sääntelyä on viime vuosina lisätty, on puutteita edelleen havaittavissa. Ensisijaisena hallintakeinona voidaan kuitenkin nähdä muovien ympäristöpäästöjen estäminen. Eräs keskeinen ongelma kuitenkin on, että suoria ohjauskeinoja sekundääristen mikromuovien syntymisen ehkäisemiseksi ei ole. Muovin ollessa edelleen keskeisessä roolissa useissa yhteiskunnan toiminnoissa, tarvitaan jatkossa edelleen monen tasoisia hallintakeinoja muovien aiheuttamien ympäristö- ja terveysvaikutusten vähentämiseksi.Adverse environmental and health effects of plastics Plastic enters the environment from various emission sources. In particular, light plastics may be transported long distances from their original emission sources. Plastics may also carry alien species, pathogens, and hazardous substances. Plastics are released into the environment from all stages of their life cycle, but one of the most significant sources is plastic waste generated at the end of the life cycle. In the environment plastics are extremely persistent. Large plastics items can be further broken down into smaller pieces which, due to their small size, are more easily transported into organisms. Once released into the environment, plastics may have a wide range of various impacts. In an aquatic environment, the most common disadvantages of large plastics are the tangling of organisms in them, and the problems caused by organisms eating plastic pieces. There is a lack of information on the impacts of plastics on terrestrial ecosystems. However, according to the information available the impacts on the terrestrial environment seem to be quite parallel to the aquatic environment. Microplastics have been found to have adverse impacts on several organisms at different trophic levels. In an aquatic environment various species have been found to be exposed to microplastic particles. Microplastics introduced into organisms can cause many types of unwanted side effects. In a terrestrial environment, soil animals can also act as a pathway for microplastics into the terrestrial food web. Humans are exposed to microplastics on a daily basis through food, indoor and outdoor air, and the skin, but the extent of the exposure and its potential effects on health are not well known. Laboratory studies in animals and cell models have shown evidence of adverse effects, but the high doses and uniform plastic types used in these studies do not correspond to normal human exposure. Even though the evidence for health effects is limited, international scientific community has estimated that microplastic exposure is currently so low that it does not pose a significant risk to human health. However, the situation may change as the amount of microplastic pollution in the environment keep increasing. More information is required, especially on the behavior of nanosized plastic particles in the human body, the exposure of young children to plastics, the possible intestinal effects and the consequences of long-term accumulation. Waste prevention and optimizing the circular economy are important ways to minimize the environmental impact of plastics. The Plastic Roadmap launched in 2018 has set several proposals for measures to reduce and replace plastic use and to increase the efficiency of recycling. Ecologically sustainable product design that also takes into account safety perspectives plays a key role in reducing climate and environmental emissions from plastics. Although the legislation and regulative measures of plastics and their impacts has increased in recent years, shortcomings still remain. The prevention of plastic emissions to the environment can be seen as a primary control measure. One key problem, however, is that there are no direct control methods to prevent secondary plastics emissions. As plastic keeps playing a key role in many activities in society, multi-level management measures are still required to reduce the environmental and health impacts of plastics

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Trophic transfer increases the exposure to microplastics in littoral predators

    No full text
    Funding Information: This work was supported by the Walter and Andrée de Nottbeck Foundation [grant number 20210029 ] and PLASTER-project funded by the Academy of Finland [grant number # 342540 ]. Publisher Copyright: © 2023 The AuthorsPredators in aquatic environments can be exposed to microplastics (MPs) directly through water and indirectly through prey. Laboratory experiments were conducted to study the potential of MP trophic transfer in Baltic Sea littoral food chains of different lengths. The longest studied food chain had three trophic levels: zooplankton, chameleon shrimp (Praunus flexuosus) and rockpool prawn (Palaemon elegans). 10 μm fluorescence microspheres were used as tracer MP particles and MP ingestion was verified with epifluorescence microscopy. Transfer of MPs occurred up to both second and third trophic level. The number of ingested microspheres in both chameleon shrimp and rockpool prawn was higher when the animals were exposed through pre-exposed prey in comparison to direct exposure through the water. The results show that trophic transfer may be an important pathway of and increase the microplastic exposure for some animals at higher trophic levels in highly polluted areas.Peer reviewe

    Integration of questionnaire-based risk factors improves polygenic risk scores for human coronary heart disease and type 2 diabetes

    No full text
    corecore