8 research outputs found

    Genome of wild olive and the evolution of oil biosynthesis

    Get PDF
    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, andACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive comparedwith sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics

    First draft genome assembly of the Argane tree (Argania spinosa)

    Get PDF
    Background: The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. Methods: Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. Results: In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. Conclusion: The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes

    First draft genome assembly of the Argane tree (Argania spinosa) [version 2; peer review: 2 approved]

    Get PDF
    BACKGROUND : The Argane tree (Argania spinosa L. Skeels) is an endemic tree of mid-western Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. METHODS : Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. RESULTS : In total, 144 Gb Illumina HiSeq reads and 7.6 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. CONCLUSION : The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological.DATA AVAILABILITY: All of the A. spinosa datasets can be retrieved under BioProject accession number PRJNA294096: http://identifiers.org/ bioproject:PRJNA294096. The raw reads are available at NCBI Sequence Reads Archive under accession number SRP077839: http://identifiers.org/insdc.sra:SRP077839. The complete genome sequence assembly project has been deposited at GenBank under accession number QLOD00000000: http://identifiers. org/ncbigi/GI:1408199612. Data can also be retrieved via the International Argane Genome Consortium (IAGC) website: http://www.arganome.org.https://f1000research.compm2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Genome of Wild Olive and the Evolution of Oil Biosynthesis

    Get PDF
    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at similar to 28 and similar to 59 Mya. These events contributed to the expansion and neo-functionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2,3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics

    Highlights of the first ISCB student council symposium in Africa 2015

    No full text
    This is a summary of the activities and scientific content of the first International Society for Computational Biology Student Council symposium in Africa. This meeting organized by the students for the students took place 8th of March 2015 in Dar Es Salaam, Tanzania

    Genome Wide MeDIP-Seq Profiling of Wild and Cultivated Olives Trees Suggests DNA Methylation Fingerprint on the Sensory Quality of Olive Oil

    No full text
    Secondary metabolites are particularly important to humans due to their pharmaceutical properties. Moreover, secondary metabolites are key compounds in climate change adaptation in long-living trees. Recently, it has been described that the domestication of Olea subspecies had no major selection signature on coding variants and was mainly related to changes in gene expression. In addition, the phenotypic plasticity in Olea subspecies was linked to the activation of transposable elements in the genes neighboring. Here, we investigated the imprint of DNA methylation in the unassigned fraction of the phenotypic plasticity of the Olea subspecies, using methylated DNA immuno-precipitation sequencing (MeDIP-seq) for a high-resolution genome-wide DNA methylation profiling of leaves and fruits during fruit development in wild and cultivated olives from Turkey. Notably, the methylation profiling showed a differential DNA methylation in secondary metabolism responsible for the sensory quality of olive oil. Here, we highlight for the first time the imprint of DNA methylation in modulating the activity of the Linoleate 9S lipoxygenase in the biosynthesis of volatile aromatic compounds. Unprecedently, the current study reveals the methylation status of the olive genome during fruit ripening

    TILLING-by-Sequencing+ Reveals the Role of Novel Fatty Acid Desaturases (GmFAD2-2s) in Increasing Soybean Seed Oleic Acid Content

    No full text
    Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production

    First draft genome assembly of the Argane tree (Argania spinosa)

    No full text
    BACKGROUND : The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. METHODS : Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. RESULTS : In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. CONCLUSION : The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes.This work was supported by the Iridian Genome Foundation (MD, USA). H.G. is supported by a Grant from the NIH (MD, USA) for H3ABioNet/H3Africa (grant numbers U41HG006941 and U24 HG006941). O.B. and B.C. are Fulbright JSD (USA) grant recipients. This work also benefited from support of Midterm Research Program of INRA-Morocco through the use of its bioinformatics platform.https://f1000research.comam2019Genetic
    corecore