43 research outputs found

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis

    Multi-state Modeling of Biomolecules

    Get PDF
    Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behavior of biological molecules or complexes that can adopt a large number of possible functional states. Biological signaling systems often rely on complexes of biological macromolecules that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states. Modeling such multi-state systems poses two problems: the problem of how to describe and specify a multi-state system (the “specification problem”) and the problem of how to use a computer to simulate the progress of the system over time (the “computation problem”). To address the specification problem, modelers have in recent years moved away from explicit specification of all possible states and towards rule-based formalisms that allow for implicit model specification, including the κ-calculus [1], BioNetGen [2]–[5], the Allosteric Network Compiler [6], and others [7], [8]. To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on ordinary differential equations, partial differential equations, or the Gillespie stochastic simulation algorithm [9], [10]. Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators fall into two further categories: nonspatial simulators, such as StochSim [11], DYNSTOC [12], RuleMonkey [9], [13], and the Network-Free Stochastic Simulator (NFSim) [14], and spatial simulators, including Meredys [15], SRSim [16], [17], and MCell [18]–[20]. Modelers can thus choose from a variety of tools, the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Molecular defects of the platelet P2 receptors

    No full text
    Human platelets express three types of P2 receptors, which play important roles in platelet function: P2X1, P2Y1 and P2Y12. Only patients with either quantitative or qualitative abnormalities of the platelet P2Y12 receptor have been well-characterized so far. Deficiencies of P2Y12 are associated with nucleotide deletions in the open-reading frame, frameshifts, and early truncation of the protein, or with a nucleotide substitution in the transduction initiation codon. Congenital dysfunctions of P2Y12 are associated with molecular defects involving the sixth trans-membrane domain or the adjacent third extracellular loop of the receptor, which identify a region of the protein whose integrity is necessary for normal receptor function. A mutation, predicting a lysine to glutamate (Lys174Glu) substitution was associated with decreased ligand binding to the receptor, suggesting that it is responsible for disruption of the adenosine diphosphate (ADP)-binding site of the receptor. Patients with P2Y12 defects display a mild-to-moderate bleeding diathesis, characterized by mucocutaneous bleedings and excessive post-surgical and post-traumatic blood loss. Defects of P2Y12 should be suspected when ADP, even at high concentrations (≥10 μM), is unable to induce full, irreversible platelet aggregation. Tests that evaluate the degree of inhibition of adenylyl cyclase by ADP should be used to confirm the diagnosis
    corecore