765 research outputs found
Assimilation de données d'humidité des sols pour la prévision de crues : comparaison d'un modèle pluie-débit conceptuel et d'un modèle intégrant une interface sol-végétation-atmosphère
Le but de cet article est de présenter une méthodologie de mise à jour des paramètres de modèles pluie-débit en période de crue. Elle a été mise au point afin d'améliorer un des aspects de la gestion des réservoirs dans un contexte opérationnel de protection contre les crues: la réduction des incertitudes sur la prévision des débits. L'originalité de la méthode proposée réside dans le fait que l'on utilise non seulement une information sur les débits mais aussi une information sur l'humidité du sol. L'objectif de l'étude est d'évaluer l'intérêt de l'introduction de cette information supplémentaire. Pour cela, les données d'humidité du sol sont introduites au sein du modèle par l'intermédiaire d'une relation de passage établie entre l'humidité mesurée in situ et l'humidité calculée implicitement ou explicitement par les modèles. Cette méthodologie a été testée dans le cadre du projet européen AIMWATER sur quatre sous-bassins de la Seine en amont de Paris (France). Deux modèles pluie-débit sont utilisés dans cette étude, un modèle conceptuel semi-emprique et un modèle conceptuel couplé à un schéma de surface simulant une interface sol-végétation-atmosphère et permettant de calculer l'évolution de l'humidité du sol à différentes profondeurs. Cette approche comparative étudie l'intérêt d'un tel modèle couplé par rapport au modèle conceptuel semi-empirique sans représentation explicite des phénomènes se produisant à l'interface sol-végétation-atmosphère.Improving the accuracy of rainfall-runoff models and in particular their performances in flood prediction is a key point of continental hydrology. Methods have been developed to improve flood prediction in hydrology based on a better compliance of the model with current observations prior to its use in forecasting mode. This operation has been termed updating in hydrology and assimilation in meteorology. The fundamental idea is that if model predictions diverge from observations at a given time, there is little chance that future estimations will approach correct values. The improvement then comes from a correction of the trajectory of the model based on observations during the period preceding the day when a prediction into the immediate or long-term future is desired. This can be dealt with by a correction of model parameters, which is usually called "parameter updating".The inability of rainfall-runoff models to produce correct streamflow values generally translates into parameter uncertainty. Parameter calibration is the means used by a model structure to adjust to a given set of data. Therefore, a parameter updating methodology seems to be a natural way to amend errors in streamflow values. In this paper, a specific methodology of parameter updating is presented. The main feature of this method is that it does not carry out updating by reference only to recent streamflow observations, as classic procedures do, but also to soil moisture measurements, which can be retrieved daily from TDR probes. Indeed, it appears that the integration of soil moisture data allows better control of the evolution of the model and improves its performances, in particular in terms of forecasting.The aim of the research was to assess the usefulness of this additional soil moisture information. To this end, an approach has been suggested that gradually introduces additional information thanks to a constraint relationship between observed and modelled soil moisture. In fact, soil moisture can be calculated implicitly or explicitly by the model when extracting step-by-step the values of the model's store contents. This methodology was put forward for use in the European AIMWATER project on four catchments within the Seine River basin upstream of Paris (France). The other issue addressed in this paper was whether or not it is necessary to use a model that simulates explicitly the evolution of soil moisture at different depths. One can argue that if the model employed does not feature a store that can be identified closely to the observed soil moisture, there would be no possibility of benefiting from such measurements. On the other hand, it can be argued that if soil moisture is a model output, all the information drawn from soil moisture observations will be directed at improving this specific output at the expense of improving streamflow values. To answer this issue, two models were tested. The first model, GR4j, has no explicit counterpart for soil moisture measurements. The second one, GRHum, has been especially developed to introduce a two-layer soil reservoir that simulates the surface and sub-surface soil moisture.Since the aim of the present research was to analyse different ways of accounting for soil moisture, and to identify the one that offers the best prospects, several tests were carried out, using different relationships between observed and modelled soil moisture. Indeed, TDR probes give point measurements of soil moisture at several depths and several store contents can be taken into account in a constraint relationship.First, for both GR4j and GRHum models, tests showed that performances for flood forecasting are significantly improved when assimilating in situ measurements of soil moisture at a daily time-step, especially for the basins where poor simulations are obtained. It is also noteworthy that performances are very dependent on the items taken into account in a constraint relationship.Secondly, the GRHum model did not appear to be more efficient than the GR4j model when assimilating both streamflow and soil moisture data. However, the GRHum model gave the best results when assimilating only streamflow data, and superficial soil moisture seemed to fit the GRHum better than the GR4j model.Finally, although the tests required perfect foreknowledge of rainfall, the results of the research are encouraging from an operational point of view. Another interesting perspective is provided by the Earth Observation data. Indeed, previous studies have shown that soil moisture can be derived from EO data using, for example, microwave spaceborne Synthetic Aperture Radar (SAR) images (QUESNEY et al., 2000). This type of catchment-scale data could be more relevant than a local measure given by TDR probes (PAUWELS et al., 2002)
MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer
Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENAINV , are established drivers of metastasis. MENAINV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENAINV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENAINV -driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by cotreatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance
Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restriced glioblastoma
L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, (13)C-glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes
Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures
The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio
New Insights into the mineralogy of the Atlantis II deep metalliferous sediments, Red Sea
The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main “ore” minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au
Air quality and error quantity: pollution and performance in a high-skilled, quality-focused occupation
We provide the first evidence that short-term exposure to air pollution affects the work performance of a group of highly-skilled, quality-focused employees. We repeatedly observe the decision-making of individual professional baseball umpires, quasi-randomly assigned to varying air quality across time and space. Unique characteristics of this setting combined with high-frequency data disentangle effects of multiple pollutants and identify previously under-explored acute effects. We find a 1 ppm increase in 3-hour CO causes an 11.5% increase in the propensity of umpires to make incorrect calls and a 10 mg/m3 increase in 12-hour PM2.5 causes a 2.6% increase. We control carefully for a variety of potential confounders and results are supported by robustness and falsification checks
Metabolic Syndrome and Cardiovascular Disease after Hematopoietic Cell Transplantation: Screening and Preventive Practice Recommendations from the CIBMTR and EBMT
Metabolic syndrome (MetS) is a constellation of cardiovascular risk factors that increases the risk of cardiovascular disease, diabetes mellitus, and all-cause mortality. Long-term survivors of hematopoietic cell transplantation (HCT) have a substantial risk of developing MetS and cardiovascular disease, with an estimated prevalence of MetS of 31% to 49% among HCT recipients. Although MetS has not yet been proven to impact cardiovascular risk after HCT, an understanding of the incidence and risk factors for MetS in HCT recipients can provide the foundation to evaluate screening guidelines and develop interventions that may mitigate cardiovascular-related mortality. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to review literature and recommend practices appropriate to HCT recipients. Here we deliver consensus recommendations to help clinicians provide screening and preventive care for MetS and cardiovascular disease among HCT recipients. All HCT survivors should be advised of the risks of MetS and encouraged to undergo recommended screening based on their predisposition and ongoing risk factors
Fish Consumption and Ischemic stroke in Southern Sweden
<p>Abstract</p> <p>Background</p> <p>The relationship between fish intake and stroke incidence has been inconsistent in previous Swedish studies. Here, we report the risk of stroke and fish intake in a cohort from southern Sweden.</p> <p>Findings</p> <p>Data were obtained from an already available population based case-control study where the cases were defined as incident first-time ischemic stroke patients. Complete data on all relevant variables were obtained for 2722 controls and 2469 cases. The data were analyzed with logistic regression analysis. Stroke risk decreased with fat fish intake ([greater than or equal to] 1/week versus <1/month) in both men and women; adjusted pooled Odds Ratio (OR) 0.69, 95% Confidence Interval (CI): 0.54-0.89. However, stroke risk for women increased with intake of lean fish; adjusted OR 1.63 (95% CI: 1.17-2.28), whereas there was no association with men's lean fish intake; adjusted OR 0.97(95% CI: 0.73-1.27). Fish intake was self-reported retrospectively, yielding uncertain exposure assessment and potential recall bias. The findings regarding lean fish could be explained by recall bias if an individual's inclination to report lean fish consumption depended on both disease status and sex. The fact that the association between fat fish intake and stroke was similar in men and women does not support such a differential in recall.</p> <p>Conclusions</p> <p>The results suggest fat fish intake to decrease ischemic stroke risk and lean fish intake to increase women's stroke risk. The inconsistent relationship between fish intake and stroke risk reported in previous studies is further stressed by the results of this study.</p
- …
