179 research outputs found
On the Energy Dependence of the Dipole-Proton Cross Section in Deep Inelastic Scattering
We study the dipole picture of high-energy virtual-photon-proton scattering.
It is shown that different choices for the energy variable in the dipole cross
section used in the literature are not related to each other by simple
arguments equating the typical dipole size and the inverse photon virtuality,
contrary to what is often stated. We argue that the good quality of fits to
structure functions that use Bjorken-x as the energy variable - which is
strictly speaking not justified in the dipole picture - can instead be
understood as a consequence of the sign of scaling violations that occur for
increasing Q^2 at fixed small x. We show that the dipole formula for massless
quarks has the structure of a convolution. From this we obtain derivative
relations between the structure function F_2 at large and small Q^2 and the
dipole-proton cross section at small and large dipole size r, respectively.Comment: 27 page
Smallholder farmers' adaptation to climate change and determinants of their adaptation decisions in the Central Rift Valley of Ethiopia
Background: The agricultural sector remains the main source of livelihoods for rural communities in Ethiopia, but faces the challenge of changing climate. This study investigated how smallholder farmers perceive climate change, what adaptation strategies they practice, and factors that influence their adaptation decisions. Both primary and secondary data were used for the study, and a multinomial logit model was employed to identify the factors that shape smallholder farmers’ adaptation strategies.
Results: The results show that 90% of farmers have already perceived climate variability, and 85% made attempts to adapt using practices like crop diversification, planting date adjustment, soil and water conservation and management, increasing the intensity of input use, integrating crop with livestock, and tree planting. The econometric model indicated that education, family size, gender, age, livestock ownership, farming experience, frequency of contact with extension agents, farm size, access to market, access to climate information and income were the key factors determining farmers’ choice of adaptation practice.
Conclusion: In the Central Rift Valley of Ethiopia, climate change is a pressing problem, which is beyond the capacity of smallholders to respond to autonomously. Farmers’ capacity to choose effective adaptation options is influenced by household demography, as well as positively by farm size, income, access to markets, access to climate information and extension, and livestock production. This implies the need to support the indigenous adaptation strategies of the smallholder farmers with a wide range of institutional, policy, and technology support; some of it targeted on smaller, poorer or female-headed households. Moreover, creating opportunities for non-farm income sources is important as this helps farmers to engage in those activities that are less sensitive to climate change. Furthermore, providing climate change information, extension services, and creating access to markets are crucial
Large Anomalous Hall effect in a silicon-based magnetic semiconductor
Magnetic semiconductors are attracting high interest because of their
potential use for spintronics, a new technology which merges electronics and
manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently
emerged as the most popular materials for this new technology. While Curie
temperatures are rising towards room temperature, these materials can only be
fabricated in thin film form, are heavily defective, and are not obviously
compatible with Si. We show here that it is productive to consider transition
metal monosilicides as potential alternatives. In particular, we report the
discovery that the bulk metallic magnets derived from doping the narrow gap
insulator FeSi with Co share the very high anomalous Hall conductance of
(GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens
up a new arena for spintronics, involving a bulk material based only on
transition metals and Si, and which we have proven to display a variety of
large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure
Comparative genomics of drug resistance in <i>Trypanosoma brucei rhodesiense</i>
Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine
Within-Host Dynamics of Multi-Species Infections: Facilitation, Competition and Virulence
Host individuals are often infected with more than one parasite species (parasites defined broadly, to include viruses and bacteria). Yet, research in infection biology is dominated by studies on single-parasite infections. A focus on single-parasite infections is justified if the interactions among parasites are additive, however increasing evidence points to non-additive interactions being the norm. Here we review this evidence and theoretically explore the implications of non-additive interactions between co-infecting parasites. We use classic Lotka-Volterra two-species competition equations to investigate the within-host dynamical consequences of various mixes of competition and facilitation between a pair of co-infecting species. We then consider the implications of these dynamics for the virulence (damage to host) of co-infections and consequent evolution of parasite strategies of exploitation. We find that whereas one-way facilitation poses some increased virulence risk, reciprocal facilitation presents a qualitatively distinct destabilization of within-host dynamics and the greatest risk of severe disease
Recommended from our members
Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe
Analysis of observations indicates that there was a rapid increase in summer (June-August, JJA) mean surface air temperature (SAT) since the mid-1990s over Western Europe. Accompanying this rapid warming are significant increases in summer mean daily maximum temperature, daily minimum temperature, annual hottest day temperature and warmest night temperature, and an increase in frequency of summer days and tropical nights, while the change in the diurnal temperature range (DTR) is small. This study focuses on understanding causes of the rapid summer warming and associated temperature extreme changes. A set of experiments using the atmospheric component of the state-of-the-art HadGEM3 global climate model have been carried out to quantify relative roles of changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gases (GHGs), and anthropogenic aerosols (AAer). Results indicate that the model forced by changes in all forcings reproduces many of the observed changes since the mid-1990s over Western Europe. Changes in SST/SIE explain 62.2% ± 13.0% of the area averaged seasonal mean warming signal over Western Europe, with the remaining 37.8% ± 13.6% of the warming explained by the direct impact of changes in GHGs and AAer. Results further indicate that the direct impact of the reduction of AAer precursor emissions over Europe, mainly through aerosol-radiation interaction with additional contributions from aerosol-cloud interaction and coupled atmosphere-land surface feedbacks, is a key factor for increases in annual hottest day temperature and in frequency of summer days. It explains 45.5% ± 17.6% and 40.9% ± 18.4% of area averaged signals for these temperature extremes. The direct impact of the reduction of AAer precursor emissions over Europe acts to increase DTR locally, but the change in DTR is countered by the direct impact of GHGs forcing. In the next few decades, greenhouse gas concentrations will continue to rise and AAer precursor emissions over Europe and North America will continue to decline. Our results suggest that the changes in summer seasonal mean SAT and temperature extremes over Western Europe since the mid-1990s are most likely to be sustained or amplified in the near term, unless other factors intervene
Taking Multiple Infections of Cells and Recombination into Account Leads to Small Within-Host Effective-Population-Size Estimates of HIV-1
Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, Ne, are widely varying. Models assuming HIV-1 evolution to be neutral estimate Ne∼102–104, smaller than the inverse mutation rate of HIV-1 (∼105), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates Ne>105, suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate Ne∼103–104, implying predominantly stochastic evolution. Interestingly, we find that Ne and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of Ne>105 reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with Ne∼103–104 may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence
Methodology of calculation of construction and hydrodynamic parameters of a foam layer apparatus for mass-transfer processes
Промислова реалізація методу стабілізації газорідинного шару дозволяє значно розширити галузь застосування пінних апаратів і відкриває нові можливості інтенсифікації технологічних процесів з одночасним створенням маловідходних технологій. У статті встановлені основні параметри, що впливають на гідродинаміку пінних апаратів, розглянуті основні конструкції та режими роботи пінних апаратів. Виявлено зв'язок гідродинамічних параметрів. Розглянуто гідродинамічні закономірності пінного шару. Вказані фактори, що впливають на процес масообміну, як в газовій, так і в рідкій фазах. Проведений аналіз ряду досліджень показав, що перспективним напрямком інтенсифікації процесу масообміну є розробка апаратів з трифазним псевдозрідженим шаром зрошуваної насадки складних форм із сітчастих матеріалів. Отже, необхідне проведення спеціальних досліджень гідродинамічних режимів роботи апарату з сітчастою насадкою і визначенням параметрів, що впливають на швидкість переходу насадки з одного режиму в інший.Industrial implementation of the stabilization method of the gas-liquid layer can significantly expand the field of use of foaming apparatus and opens up new opportunities for intensifying technological processes with the simultaneous creation of low-waste technologies. The article establishes the basic parameters influencing the hydrodynamics of foam apparatus, considers the basic constructions and operating modes of foam apparatus. The connection of hydrodynamic parameters is revealed. The hydrodynamic laws of the foam layer are considered. The indicated factors affecting the process of mass transfer, both in the gas and in the liquid phases. The conducted analysis of a number of studies showed that the perspective direction of intensification of the mass transfer process is the development of apparatuses with a three-phase fluidized bed of an irrigated nozzle of complex forms with mesh materials
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Risk of diabetes after para-aortic radiation for testicular cancer
Background: While the risk of diabetes is increased following radiation exposure to the pancreas among childhood cancer survivors, its association among testicular cancer (TC) survivors has not been investigated. Methods: Diabetes risk was studied in 2998 1-year TC survivors treated before 50 years of age with orchidectomy with/without radiotherapy between 1976 and 2007. Diabetes incidence was compared with general population rates. Treatment-specific risk of diabetes was assessed using a case–cohort design. Results: With a median follow-up of 13.4 years, 161 TC survivors were diagnosed with diabetes. Diabetes risk was not increased compared to general population rates (standardised incidence ratios (SIR): 0.9; 95% confidence interval (95% CI): 0.7–1.1). Adjusted for age, para-aortic radiotherapy was associated with a 1.66-fold (95% CI: 1.05–2.62) increased diabetes risk compared to no radiotherapy. The excess hazard increased with 0.31 with every 10 Gy increase in the prescribed radiation dose (95% CI: 0.11–0.51, P = 0.003, adjusted for age and BMI); restricted to irradiated patients the excess hazard increased with 0.33 (95% CI: −0.14 to 0.81, P = 0.169) with every 10 Gy increase in radiation dose. Conclusion: Compared to surgery only, para-aortic irradiation is associated with increased diabetes risk among TC survivors
- …