22 research outputs found

    Spectroscopic characterization of reaction centers of the (M)Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides

    Get PDF
    The tyrosine-(M)210 of the reaction center of Rhodobacter sphaeroides 2.4.1 has been changed to a tryptophan using site-directed mutagenesis. The reaction center of this mutant has been characterized by low-temperature absorption and fluorescence spectroscopy, time-resolved sub-picosecond spectroscopy, and magnetic resonance spectroscopy. The charge separation process showed bi-exponential kinetics at room temperature, with a main time constant of 36 ps and an additional fast time constant of 5.1 ps. Temperature dependent fluorescence measurements predict that the lifetime of P* becomes 4–5 times slower at cryogenic temperatures. From EPR and absorbance-detected magnetic resonance (ADMR, LD-ADMR) we conclude that the dimeric structure of P is not significantly changed upon mutation. In contrast, the interaction of the accessory bacteriochlorophyll BA with its environment appears to be altered, possibly because of a change in its position

    Recent progress in translational research on neurovascular and neurodegenerative disorders

    Get PDF
    The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient’s outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms. This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Asymmetric Flow Field-Flow Fractionation in the Field of Nanomedicine

    No full text

    Science with the Cherenkov Telescope Array

    Get PDF
    213 pages, including references and glossary. Version 2: credits and references updated, some figures updated, and author list updatedInternational audienceThe Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document

    Cherenkov Telescope Array Contributions to the 35th International Cosmic Ray Conference (ICRC2017)

    Full text link
    List of contributions from the Cherenkov Telescope Array Consortium presented at the 35th International Cosmic Ray Conference, July 12-20 2017, Busan, Korea.Comment: Index of Cherenkov Telescope Array conference proceedings at the ICRC2017, Busan, Kore

    Science with the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array, CTA, will be the major global observatory forvery high energy gamma-ray astronomy over the next decade and beyond. Thescientific potential of CTA is extremely broad: from understanding the role ofrelativistic cosmic particles to the search for dark matter. CTA is an explorerof the extreme universe, probing environments from the immediate neighbourhoodof black holes to cosmic voids on the largest scales. Covering a huge range inphoton energy from 20 GeV to 300 TeV, CTA will improve on all aspects ofperformance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to providefull sky coverage and will hence maximize the potential for the rarestphenomena such as very nearby supernovae, gamma-ray bursts or gravitationalwave transients. With 99 telescopes on the southern site and 19 telescopes onthe northern site, flexible operation will be possible, with sub-arraysavailable for specific tasks. CTA will have important synergies with many ofthe new generation of major astronomical and astroparticle observatories.Multi-wavelength and multi-messenger approaches combining CTA data with thosefrom other instruments will lead to a deeper understanding of the broad-bandnon-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory,with all data available on a public archive after a pre-defined proprietaryperiod. Scientists from institutions worldwide have combined together to formthe CTA Consortium. This Consortium has prepared a proposal for a CoreProgramme of highly motivated observations. The programme, encompassingapproximately 40% of the available observing time over the first ten years ofCTA operation, is made up of individual Key Science Projects (KSPs), which arepresented in this document
    corecore