70 research outputs found

    Strong Electron-Phonon Coupling in Superconducting MgB2_2: A Specific Heat Study

    Full text link
    We report on measurements of the specific heat of the recently discovered superconductor MgB2_2 in the temperature range between 3 and 220 K. Based on a modified Debye-Einstein model, we have achieved a rather accurate account of the lattice contribution to the specific heat, which allows us to separate the electronic contribution from the total measured specific heat. From our result for the electronic specific heat, we estimate the electron-phonon coupling constant λ\lambda to be of the order of 2, significantly enhanced compared to common weak-coupling values ≀0.4\leq 0.4. Our data also indicate that the electronic specific heat in the superconducting state of MgB2_2 can be accounted for by a conventional, s-wave type BCS-model.Comment: 4 pages, 4 figure

    Times to key events in Zika virus infection and implications for blood donation: A systematic review

    Get PDF
    Objective To estimate the timing of key events in the natural history of Zika virus infection. Methods In February 2016, we searched PubMed, Scopus and the Web of Science for publications containing the term Zika. By pooling data, we estimated the incubation period, the time to seroconversion and the duration of viral shedding. We estimated the risk of Zika virus contaminated blood donations. Findings We identified 20 articles on 25 patients with Zika virus infection. The median incubation period for the infection was estimated to be 5.9 days (95% credible interval, CrI: 4.4-7.6), with 95% of people who developed symptoms doing so within 11.2 days (95% CrI: 7.6-18.0) after infection. On average, seroconversion occurred 9.1 days (95% CrI: 7.0-11.6) after infection. The virus was detectable in blood for 9.9 days (95% CrI: 6.9-21.4) on average. Without screening, the estimated risk that a blood donation would come from an infected individual increased by approximately 1 in 10 000 for every 1 per 100 000 person-days increase in the incidence of Zika virus infection. Symptom-based screening may reduce this rate by 7% (relative risk, RR: 0.93; 95% CrI: 0.89-0.99) and antibody screening, by 29% (RR: 0.71; 95% CrI: 0.28-0.88). Conclusion Neither symptom- nor antibody-based screening for Zika virus infection substantially reduced the risk that blood donations would be contaminated by the virus. Polymerase chain reaction testing should be considered for identifying blood safe for use in pregnant women in high-incidence areas

    Memory effect in the deposition of C20 fullerenes on a diamond surface

    Get PDF
    In this paper, the deposition of C-20 fullerenes on a diamond (001)-(2x1) surface and the fabrication of C-20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C-20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C-20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in "C-20-type" films [P. Melion , Int. J. Mod. B 9, 339 (1995); P. Milani , Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C-20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C-20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C-20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp(3) hybridization character, the same as that of a free C-20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C-20 film showed high stability even when the temperature was raised up to 1500 K

    Potential for comparative public opinion research in public administration

    Get PDF
    The public administration and public services have always taken a marginal place in the political scientists’ behavioural research. Public administration students on the other hand tend to focus on political and administrative elites and institutions, and largely ignored citizens in comparative research. In this article we make a plea for international comparative research on citizens’ attitudes towards the public administration from an interdisciplinary perspective. Available international survey material is discussed, and main trends in empirical practice and theoretical approaches are outlined, especially those with a potential impact on public sector reform

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    • 

    corecore