59 research outputs found

    High Chern number van der Waals magnetic topological multilayers MnBi2_2Te4_4/hBN

    Full text link
    Chern insulators are two-dimensional magnetic topological materials that conduct electricity along their edges via the one-dimensional chiral modes. The number of these modes is a topological invariant called the first Chern number CC, that defines the quantized Hall conductance as Sxy=Ce2/hS_{xy}= C e^2/h. Increasing CC is pivotal for the realization of low-power-consumption topological electronics, but there has been no clear-cut solution of this problem so far, with the majority of existing Chern insulators showing C=1C=1. Here, by using state-of-the-art theoretical methods, we propose an efficient approach for the realization of the high-CC Chern insulator state in MnBi2_2Te4_4/hBN van der Waals multilayer heterostructures. We show that a stack of nn MnBi2_2Te4_4 films with C=1C=1 intercalated by hBN monolayers gives rise to a high Chern number state with C=nC=n, characterized by nn chiral edge modes. This state can be achieved both under the external magnetic field and without it, both cases leading to the quantized Hall conductance Sxy=Ce2/hS_{xy}= C e^2/h. Our results therefore pave way to practical high-CC quantized Hall systems.Comment: 10 pages, 5 figure

    Low coverage surface diffusion in complex, periodic energy landscapes. Part II: Analytical solution for systems with asymmetric hops

    Get PDF
    This is part II in a series of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low coverage, single-tracer limit). While Part I [Gosálvez et al., Phys. Rev. B 93, 075429 (2016)] focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials, this report (Part II) presents a more general approach to determining the tracer diffusivity in systems where the end sites can be located asymmetrically with respect to the hop origins (asymmetric hops), as observed in reconstructed and/or chemically modified surfaces and/or bulk materials. The obtained diffusivity formulas for numerous systems are validated against kinetic Monte Carlo simulations and previously reported analytical expressions based on the continuous-time random walk (CTRW) method. The proposed method corrects some of the CTRW formulas and provides new expressions for difficult cases that have not been solved earlier. This demonstrates the ability of the proposed formalism to describe tracer diffusion

    Atomic and electronic structure of bismuth-bilayer-terminated Bi2Se3(0001) prepared by atomic hydrogen etching

    Get PDF
    A bilayer of bismuth is recognized as a prototype two-dimensional topological insulator. Here we present a simple and well reproducible top-down approach to prepare a flat and well ordered bismuth bilayer with a lateral size of several hundred nanometers on Bi2Se3(0001). Using scanning tunneling microscopy, surface x-ray diffraction, and Auger electron spectroscopy we show that exposure of Bi2Se3(0001) to atomic hydrogen completely removes selenium from the top quintuple layer. The band structure of the system, calculated from first principles for the experimentally derived atomic structure, is in excellent agreement with recent photoemission data. Our results open interesting perspectives for the study of topological insulators in general

    Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators

    Get PDF
    Using relativistic spin-polarized density functional theory calculations we investigate magnetism, electronic structure and topology of the ternary thallium gadolinium dichalcogenides TlGdZ2 (Z= Se and Te) as well as superlattices on their basis. We find TlGdZ2 to have an antiferromagnetic exchange coupling both within and between the Gd layers, which leads to frustration and a complex magnetic structure. The electronic structure calculations reveal both TlGdSe2 and TlGdTe2 to be topologically trivial semiconductors. However, as we show further, a three-dimensional (3D) magnetic topological insulator (TI) state can potentially be achieved by constructing superlattices of the TlGdZ2/(TlBiZ2)n type, in which structural units of TlGdZ2 are alternated with those of the isomorphic TlBiZ2 compounds, known to be non-magnetic 3D TIs. Our results suggest a new approach for achieving 3D magnetic TI phases in such superlattices which is applicable to a large family of thallium rare-earth dichalcogenides and is expected to yield a fertile and tunable playground for exotic topological physics.M.M.O. and M.B. acknowledge the support by Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-103910GB-I00) and the University of the Basque Country (Grant no. IT1527-22). A.Yu.V. and E.K.P. acknowledge support from the Ministry of Education and Science of the Russian Federation within State Task No. FSWM-2020-0033 (in the part of bulk and surface electronic structure calculations). E.V.C. acknowledges support from Saint Petersburg State University (Grant ID No. 90383050). Yu.M.K. acknowledges support from the Government research assignment for ISPMS SB RAS, project FWRW-2022-0001 (in the part of the topological classification of bulk band structure)

    Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators

    Get PDF
    We combine low energy muon spin rotation (LE-μ\muSR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)2_2Te3_3. We find that one achieves a full magnetic volume fraction in samples of (V/Cr)x_x(Bi,Sb)2x_{2-x}Te3_3 at doping levels x \gtrsim 0.16. The observed magnetic transition is not sharp in temperature indicating a gradual magnetic ordering. We find that the evolution of magnetic ordering is consistent with formation of ferromagnetic islands which increase in number and/or volume with decreasing temperature. Resonant ARPES at the V L3L_3 edge reveals a nondispersing impurity band close to the Fermi level as well as V weight integrated into the host band structure. Calculations within the coherent potential approximation of the V contribution to the spectral function confirm that this impurity band is caused by V in substitutional sites. The implications of our results on the observation of the quantum anomalous Hall effect at mK temperatures are discussed

    TCNQ physisorption on the Bi2Se3 topological insulator

    Get PDF
    Topological insulators are promising candidates for spintronic applications due to their topologically protected, spin-momentum locked and gapless surface states. The breaking of the time-reversal symmetry after the introduction of magnetic impurities, such as 3d transition metal atoms embedded in two-dimensional molecular networks, could lead to several phenomena interesting for device fabrication. The first step towards the fabrication of metal-organic coordination networks on the surface of a topological insulator is to investigate the adsorption of the pure molecular layer, which is the aim of this study. Here, the effect of the deposition of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on the surface of a prototypical topological insulator, bismuth selenide (Bi2Se3), is investigated. Scanning tunneling microscope images at low-temperature reveal the formation of a highly ordered two-dimensional molecular network. The essentially unperturbed electronic structure of the topological insulator observed by photoemission spectroscopy measurements demonstrates a negligible charge transfer between the molecular layer and the substrate. Density functional theory calculations confirm the picture of a weakly interacting adsorbed molecular layer. These results reveal significant potential of TCNQ for the realization of metal-organic coordination networks on the topological insulator surface

    Surface alloying and iron selenide formation in Fe/Bi2Se3(0001) observed by x-ray absorption fine structure experiments

    Get PDF
    The atomic structure of ultrathin iron films deposited on the (0001) surface of the topological insulator Bi2Se3 is analyzed by surface x-ray absorption spectroscopy. Iron atoms deposited on a Bi2Se3 (0001) surface kept at 160 K substitute bismuth atoms within the first quintuple layer. Iron atoms are neighbored by six selenium atoms at a distance in the 2.4 Å range indicating substantial atomic relaxations. Mild annealing up to 520 K leads to the formation of α-FeSe, characterized by a local order extending up to the sixth shell (5.80 Å). Ab initio calculations predict a noncollinear magnetic ordering with a transition temperature of 3.5–10 K depending on the iron concentration and the number of the layers in which Fe is located
    corecore