research

Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators

Abstract

We combine low energy muon spin rotation (LE-μ\muSR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)2_2Te3_3. We find that one achieves a full magnetic volume fraction in samples of (V/Cr)x_x(Bi,Sb)2x_{2-x}Te3_3 at doping levels x \gtrsim 0.16. The observed magnetic transition is not sharp in temperature indicating a gradual magnetic ordering. We find that the evolution of magnetic ordering is consistent with formation of ferromagnetic islands which increase in number and/or volume with decreasing temperature. Resonant ARPES at the V L3L_3 edge reveals a nondispersing impurity band close to the Fermi level as well as V weight integrated into the host band structure. Calculations within the coherent potential approximation of the V contribution to the spectral function confirm that this impurity band is caused by V in substitutional sites. The implications of our results on the observation of the quantum anomalous Hall effect at mK temperatures are discussed

    Similar works