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Low-coverage surface diffusion in complex periodic energy landscapes. II.
Analytical solution for systems with asymmetric hops
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This is part II in a series of two papers that introduce a general expression for the tracer diffusivity in complex,
periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low
coverage, single-tracer limit). While Part I [Gosálvez et al., Phys. Rev. B 93, 075429 (2016)] focuses on the
analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the
hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials, this report (Part II)
presents a more general approach to determining the tracer diffusivity in systems where the end sites can be
located asymmetrically with respect to the hop origins (asymmetric hops), as observed in reconstructed and/or
chemically modified surfaces and/or bulk materials. The obtained diffusivity formulas for numerous systems are
validated against kinetic Monte Carlo simulations and previously reported analytical expressions based on the
continuous-time random walk (CTRW) method. The proposed method corrects some of the CTRW formulas and
provides new expressions for difficult cases that have not been solved earlier. This demonstrates the ability of the
proposed formalism to describe tracer diffusion.
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I. INTRODUCTION

The ability of different adsorbates to diffuse quickly or
slowly on a given substrate is described by the low coverage
diffusion coefficient (or tracer diffusivity [1]),

Dθ≈0
T = 1

2α
lim
t→∞

〈|r(t) − r(0)|2〉
t

, (1)

where α = 1,2,3 is the number of dimensions, r(t) designates
the position of the diffusing particle (or tracer) at time t ,
and 〈·〉 is an ensemble average. Although the presentation
below is steered towards surface diffusion (α = 2), the overall
formalism is valid for any α.

The traditional approach to determining Dθ≈0
T using Eq. (1)

consists in a labor-intensive averaging procedure where numer-
ous kinetic Monte Carlo (KMC) simulations are performed
in order to generate a large collection of random walks
outlined by the tracer, whose average reveals the regularities
of the propagation in time. Alternatively, tracer diffusion has
been previously studied using the continuous-time random
walk (CTRW) formalism [2,3], where the diffusivity is
obtained in reciprocal space by finding the longest-living
eigenvalue of a matrix equation that results from Fourier and
Laplace transformations of the master equation. The primary
objective of both Part I [1] and Part II of the present study is
to provide an alternative, less laborious route to obtaining the
diffusivity.

For cross-reference to figures, tables, and equations intro-
duced in Part I of this study [1], this report (Part II) refers to

*miguelangel.gosalvez@ehu.es; http://dipc.ehu.es/gosalvez

them using the index “PI” in front. For instance, Fig. 1, Table II,
and Eq. (3) in Part I are cited here as Fig. PI–1, Table PI–II,
and Eq. PI–(3).

Based on the principle of detailed balance, Part I of this
study [1] concludes that Dθ≈0

T can be simply expressed as

Dθ≈0
T = 1

2α
�S

i=1wi

(
�S

j=1μij l
2
ij

)
, (2)

where S is the number of different adsorption sites, lij is the hop
distance from site i to site j , μij = mijνij is the rateplicity,
defined as the product of the hop rate from site i to site j

(νij ) and its multiplicity (mij ), which designates the number
of equivalent hops from i to j , and wi is the occupancy of site
i (or probability of residence at site i), which can be obtained
from the rateplicities:

wi =
μji

μij

�k
μjk

μkj

(i,j = 1, . . . ,S). (3)

In Eq. (3), any j can be used, although for simplicity we
typically use the same j for all i’s.

The benefit of Eq. (2) is that it directly enables calculation
of the diffusivity of any adsorbate in a wide variety of complex
energy landscapes without performing any simulations of the
corresponding random walks. The only necessary input is the
values of the hop rates, which are determined from the energy
barriers of the hops (diffusion barriers). These are typically
obtained from calculations based on density functional theory
(DFT). To illustrate the approach, we have estimated the
diffusivities of Se, Cu, Ag, and Rb on the (0001) surface of
a model topological insulator, Bi2Se3 [4,5], and discussed the
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diffusion and intercalation of the three latter species in the
Bi2Se3 van der Waals gaps [1].

In addition to simplifying the formulation of the diffusion
coefficient according to Eq. (2), the occupancies (wi) and
rateplicities (μij ) also provide a convenient approach to
express detailed balance. In the context of diffusion, this
principle states that the probability of performing a hop from
site type i to site type j is equal to the probability of performing
the reverse hop from site type j to site type i. As shown in Part
I, this can be expressed as

wiμij = wjμji (i,j = 1,2, . . . ,S). (4)

Accordingly, summing over j in Eq. (4) gives the following,
less conventional expression for detailed balance:

wi�
S
j=1μij = �S

j=1wjμji (i = 1,2, . . . ,S), (5)

where the left-hand side can be described as the flux (of
particles) out of site i, and the right-hand side as the flux
into site i. Thus, detailed balance requires that the net flux
is 0.

In the given form, Eq. (2) is limited to periodic systems
where all the hops are symmetric, meaning that the end sites
of the hops are always symmetrically located with respect
to the hop origins. Although this behavior is found in a
large variety of systems, including many ideal surfaces and
bulk materials, there are many examples of periodic systems
where the end sites can be located asymmetrically with
respect to the hop origins. These asymmetric hops can occur
in chemically modified bulk materials and/or reconstructed
surfaces (Sec. II A) but also in ideal surfaces and bulk
materials (e.g., Table III). Accordingly, this report focuses
on the presentation of a more general expression for the
tracer diffusivity in such systems. As expected, the generalized
expression can be applied directly to the systems featuring
symmetric hops only and, thus, is reduced to Eq. (2) in that
case.

After a few examples of systems that contain asymmetric
hops are presented in Sec. II A, the rest of the paper focuses
on the following four major aspects:

(i) The derivation of a generalized expression for the low
coverage diffusivity for systems with asymmetric hops and,
possibly, boundary crossings (Sec. II). In particular, Sec. II
introduces the use of an orthorhombic unit cell (with mutually
perpendicular lattice vectors) that enables analysis of the
adparticle diffusion along the different Cartesian directions.
This leads to the definition of the so-called cell-commensurate
sites (whose periodicity is the same as that of the orthorhombic
unit cell) as well as the terminal sites (located along the cell
boundaries perpendicular to the chosen Cartesian direction).
An algorithm is then introduced (method M-1) to assign
effective hop rates to the terminal sites, thus describing
diffusion as if all meaningful hops would occur between
the opposite sides of the cell. For systems with boundary
crossings, where the boundaries of the cell are traversed by
cell-incommensurate hops, we define the so-called crosser
sites, for which the corresponding effective hop rates need
to be added to describe the diffusivity. Section II B contains
many definitions and may fatigue the reader. However, after
their assimilation the description of the diffusivity in Sec. II C
becomes elementary.

(ii) The derivation of an alternative procedure (method M-2)
in order to determine the effective hop rates for the terminal
and crosser sites based on a one-dimensional (1D) analysis
(Secs. III and IV). In particular, Sec. III applies method M-1
to describe the diffusivity for 1D systems with hops between
nearest neighbors in a closed form, and Sec. IV describes
the actual procedure for using the derived 1D formulas to
determine the effective hop rates for systems in more than one
dimension.

(iii) The numerical validation of all the derived formulas
for the low coverage diffusivity against KMC simulations of
the corresponding random walks, followed by a comparison
to previous studies based on the continuous-time random walk
formalism (Sec. V) and the conclusions of the study (Sec. VI).

(iv) The derivation of explicit formulas for the low coverage
diffusivity for numerous systems (Appendixes 1–4; see [14]).
Together with Secs. II E and II F, Appendix 1 [14] shows
that the diffusivity is independent of the choice of unit cell.
Appendixes 2 and 3 [14] provide examples for systems with
and without boundary crossings, respectively, and Appendix 4
[14] considers additional systems for comparison to previous
studies.

II. LOW COVERAGE DIFFUSIVITY FOR SYSTEMS
WITH ASYMMETRIC HOPS

A. Asymmetric hops

A hop with origin at site type i and end at site type j is
said to be symmetric if site i is surrounded by two or more
accessible sites of type j symmetrically located with respect
to i. In two dimensions, this means that, altogether, the chosen
hop and all equivalent hops (with the same origin, length, and
rate along other directions) display rotational, n-fold symmetry
with n = 2, 3, 4, and 6. This corresponds to opposite-
linear, trigonal-planar, square-planar, and hexagonal-planar
geometries, respectively. In three dimensions, the directions
along which the symmetric hops can occur correspond to the
tetrahedral, octahedral, cubic, and cuboctahedral geometries
(n = 4, 6, 8, and 12, respectively). Otherwise, if one or several
end sites are located asymmetrically around the hop origin, the
hop is said to be asymmetric.

Figure 1(a) shows a system where one of the hops is
asymmetric (ν21). The ν12 hops have twofold symmetry, and
as a result, they propagate the random walker symmetrically
towards either side of the X dimension. Similarly, the ν23 and
ν32 hops also have twofold symmetry, advancing the walker
towards both sides of the Y dimension. However, observed
from one particular site of type 2, the ν21 hop (from site 2 to
site 1) lacks the opposing hop (also from site 2 to site 1), and
thus, it contributes to the propagation of the adparticle only
towards one side of the X dimension.

Another example is shown in Fig. 1(b). As stressed in inset
(i), either of the two ν12 hops (from site 1 to site 2) lacks
the presence of an opposing hop (also from site 1 to site
2). Similarly, inset (ii) emphasizes that the ν21 hop (from
site 2 to site 1) lacks an opposing hop (from site 2 to site
1). In addition, inset (ii) also shows that the νh

22 hop (in
the horizontal direction) and the νd

22 hops (in the diagonal
directions) lack the corresponding opposing hops and, thus,
are deemed asymmetric. An additional example is shown in
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FIG. 1. Example systems with asymmetric hops: (a) Ga adatom on the reconstructed GaAs(001)-c(4×4) surface, based on Ref. [6].
(b) Ga on the GaAs(001)-c(2×4) β2 surface, based on case 1 from Ref. [7] (case 2 is considered in Fig. 2). (c) Cl on the GaAs(001)-c(8×2)
ζ surface, based on Ref. [8]. (d) A general 2D rectangular lattice with two adsorption sites. Insert tables: Considered hop rates and their
multiplicities.

Fig. 1(c), where the hops νl
11, νL

11, and ν13 are asymmetric,
while the hops ν31 are symmetric. And a final example is
provided in Fig. 1(d), where all the hops are asymmetric.

The previous examples show that the asymmetric hops can
be present in varying amounts. Some systems may display
a single asymmetric hop among many symmetric ones, while
other systems may contain only symmetric or only asymmetric
hops. Although hops with a multiplicity larger than 1 can
act with both symmetric and asymmetric character, hops
with multiplicity 1 always operate asymmetrically. In fact,
encountering a hop that has multiplicity 1 is a sufficient
condition to conclude that the system contains asymmetric
hops. In this manner, if all hop multiplicities in a given system
are 2 or larger, then Eq. (2) can be applied as described in
Sec. II B of Ref. [1]. However, if at least one multiplicity is 1,
then the use of Eq. (2) requires further consideration.

B. Orthorhombic unit cell: Definitions

The examples in Fig. 1 show that the asymmetric hops
introduce asymmetric contributions to the propagation of
the diffusing particle. Due to the periodicity of the crystal,
however, these asymmetric contributions compensate each
other inside the unit cell. As an example, the ν21 hop to the left
from site 2B to site 1A in Fig. 1(a) is compensated by the hop to
the right from site 2D to site 1A′ inside the displayed unit cell.
As a result, the random walker is propagated in a balanced
manner about the origin, visiting the positive and negative

sides of each dimension with equal probability on average.
Thus, the key idea to analyze the diffusivity in systems with
asymmetric hops is to define an orthorhombic unit cell [whose
lattice vectors are mutually orthogonal and have, possibly,
different lengths, as outlined in Figs. 1(a)–1(d)] so that the
propagation of the random walker can be split into its Cartesian
components (along the corresponding lattice directions) and
an overall hop rate across the unit cell can be defined for each
dimension. If needed, different unit cells can be used to analyze
the propagation along each dimension.

To illustrate the approach, we consider a rather complex
system, as shown in Fig. 2(a). The periodicity is accounted
for by using an orthorhombic unit cell aligned with the X and
Y axes, with a1 = b = 2a and a2 = a. The four displayed
adsorption sites (1–4) and six transition states (T1, T2, T3

and T5, T6, T7) correspond to Ga adatoms on the GaAs(001)-
c(2×4) β2 surface [7]. With broken lines Fig. 2(a) shows the
paths for different hops, which are summarized in the four
included tables, one for each site type as the origin of the
hops, as represented schematically in Figs. 2(b) and 2(c). The
ν12/ν21 and νd

22 hops highlighted as dark-gray double-headed
arrows in Figs. 2(b) and 2(c) correspond to the emphasized
(thicker) broken lines in Fig. 2(a).

1. Relabeling

Once the unit cell has been chosen it is convenient to
relabel all equivalent sites, as shown in Fig. 2(d). Equivalent
sites along the chosen dimension (X, in this example) are
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(k) (l) (m)

A’CBA

T’={1’,3’}K={2,4,2’,4’}
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(i) (j)

T={1,3} K={2’,4’,1,3} T’={2’’,4’’}

X

Y

T={2,4}

Examples of hop rates between planes: ^ ^ ^ ^ ^

^ ^
^

^^
^

S

S S

A=T A’=T’B C

F={2,4}
F={B}

F={3,4a,4b} F={B,C} F={2a,2b,3} F={A,B}

T=A T’=A’K={B,C} T=B T’=B’K={C,A}

K={B,C}

T=A T’=A’K={B,C,D} T=B T’=B’K={C,D,A}

K={B,C,D} K={A,B,C}

FIG. 2. Prototypical system with asymmetric hops: Ga on the GaAs(001)-c(2×4) β2 surface, based on case 2 in Ref. [7]. (a) Location of
the four adsorption sites (A1–A4 or, simply, 1–4) and six transition states (T1–T3 and T5–T7), showing the corresponding energies (in eV) and
the list of all defined hop rates. Hops highlighted in light and dark gray are represented graphically in (b) and (c), respectively. (d) and (e) Two
alternative unit cells to study transport along the X dimension. (f) Equivalent 1D representation of transport along X for the unit cell in (d).
Hop rates between planes are shown. (g) and (h) Two alternative unit cells to study transport along Y. (i) and (j) The probability of finding a
particle located at a green or black site in (i) is double that in (j). (k) Equivalent 1D representation of transport along Y for the unit cell in (g).
Some hop rates between planes are given (last line of text). (l) and (m) Decomposition of the hops in (k) between the primary cell (l) and the
complementary cell (m) in order to determine the effective hop rates ν∗

AA,x and ν∗
DD,x .
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distinguished using primed symbols, such as 2, 2′, 2′′, 2′′′ . . . .
Equivalent sites along a perpendicular dimension (Y, in this
example) are relabeled using alphabetical letters, such as 2a,
2b, 2c . . . , with the exception of those sites located at the cell
boundaries parallel to the chosen dimension, which should
not be relabeled. Additional relabeling examples are shown
in Figs. 2(e)–2(g). Note that the multiplicities of the hops are
affected by this relabeling, and thus, the rateplicities as well.

After relabeling, the effective occupancy of site i is

w∗
i = wi

ni

, (6)

where ni is the number of times that site i appears in the chosen
unit cell before relabeling. As an example, for Fig. 2(d) we
have w∗

1 = w1, w∗
2 = w∗

2′ = w2/2, w∗
3 = w3, and w∗

4 = w∗
4′ =

w4/2. We recall that the occupancy is the fraction of time that
the particle spends at a site or probability of residence (see Part
I of this study [1]). Thus, w2 is the probability of being found
at site 2 or at site 2′. Accordingly, the probability of being
found at site 2 is w∗

2 = w2/2 and the probability of being
found at site 2′ is w∗

2′ = w2/2. Figures 2(i) and 2(j) show this
visually. For Fig. 2(g) we have w∗

1 = w1, w∗
2a = w∗

2b = w2/2,
w∗

3 = w3, and w∗
4a = w∗

4b = w4/2.

2. Cell-commensurate, terminal, and inner sites

A hop is said to be cell commensurate along dimension l if
the projection of the hop distance along dimension l is equal
to the length al of the unit cell. For instance, hops ν11, νv

22 and
νd

22 in Fig. 1(b) are cell commensurate along Y. The set C is
defined as the collection of cell-commensurate sites, which are
the origins (and destinations) of the cell-commensurate hops.
Thus, sites 1 and 2 in Fig. 1(b) belong to C. As a rule, these hops
have multiplicity 2, since they take place in both the forward
and the backward directions, where forward (backward) means
towards the positive (negative) end of the chosen dimension.
According to Fig. 2(c), the hops ν11, ν33, νv

22, νd
22, νv

44, and νd
44

are cell commensurate along Y.
We also define other types of sites. This includes the

lower and upper terminal sites, located at the lower and
upper boundaries of the unit cell, i.e., the cell terminals
perpendicular to the chosen dimension l. Here, lower (upper)
means towards the negative (positive) end of the chosen
dimension. Correspondingly, the set T is defined as the
collection of lower boundary sites (lower terminal). Similarly,
T ′ is the set of upper boundary sites (upper terminal). In
addition, we define K (for “kernel”) as the set of inner sites,
located between the two boundaries. For Fig. 2(d) we have
T = {1,3}, T ′ = {1′,3′}, andK = {2,4,2′,4′}. Other examples
are shown in Figs. 2(e)–2(h).

3. Effective hop rate for sites

The idea behind the definition of the terminal sites is that
all internal hops inside the unit cell can be replaced by a
few effective hops between the terminal sites. In this manner,
we define ν∗

ii,l to be the effective hop rate from terminal
site i to terminal site i for dimension l. This hop rate has
multiplicity 2, since the hops take place in the forward and
backward directions. As an example, in Fig. 2(d) (propagation
along X), the terminal sites are 1 and 3, and thus we need
to determine ν∗

11,x and ν∗
33,x . Alternatively, we could choose

the unit cell shown in Fig. 2(e), with terminal sites 2 and 4,
thus requiring the determination of ν∗

22,x and ν∗
44,x . However,

the final expression for the diffusivity does not depend on the
choice of unit cell, and thus, we may focus on either case.
Similarly, for the effective hop rates along Y (ν∗

ii,y), Fig. 2(g)
shows a possible choice for the unit cell, with 2a and 2b as
the terminal sites, leading to the use of ν∗

2a2a,y and ν∗
2b2b,y . An

alternative would be the unit cell shown in Fig. 2(h), where the
terminal site is 3, thus leading to ν∗

33,y .
In addition, we define ν+

ii ′,l (ν−
i ′i,l) as the forward (backward)

effective hop rate along direction l for terminal site i (i ′). ν+
ii ′,l

is the rate to hop forward from site i in the lower terminal T to
the equivalent site i ′ in the upper terminal T ′. Similarly, ν−

i ′i,l
is the rate to hop backward from site i ′ in the upper terminal
T ′ to the equivalent site i in the lower terminal T . The forward
and backward rates must be equal. In fact, their value defines
the effective hop rate for site i: ν∗

ii,l = ν+
ii ′,l = ν−

i ′i,l .

4. One-dimensional representation

We also define a set of planes A, B, C,..., X, A′ perpendicular
to the propagation direction, such that every plane contains at
least one site type of the relabeled system. As an example,
the planes A, B, C, and A′ are shown in Fig. 2(d) and A, B,
C, D, and A′ are displayed in Fig. 2(g). The planes have the
same periodicity as the unit cell. We define K = {B,C, . . . ,X}
as the set of inner planes, which contain the inner sites k ∈
K. For instance, K = {B,C} for Fig. 2(d) and K = {B,C,D}
for Fig. 2(g). In turn, the lower and upper terminal planes
are designated T and T′, respectively. In both Fig. 2(d) and
Fig. 2(g) we have T = A and T′ = A′. In both Fig. 2(e) and
Fig. 2(h) we have T = B and T′ = B′.

The effective occupancy of plane P is defined as the sum of
the effective occupancies of the sites within P:

w∗
P = �i∈Pw∗

i . (7)

It denotes the fraction of time that the adparticle spends at the
sites within that plane, i.e., the probability of residence at that
plane. As an example, w∗

A = w∗
1 + w∗

3 , w∗
B = w∗

2 + w∗
4 , w∗

C =
w∗

2′ + w∗
4′ , and w∗

A′ = w∗
1′ + w∗

3′ for Fig. 2(d). Similarly, w∗
A =

w∗
2a + w∗

2b, w∗
B = w∗

3 , w∗
C = w∗

4a + w∗
4b, w∗

D = w∗
1 , and w∗

A′ =
w∗

2a′ + w∗
2b′ for Fig. 2(g). In addition, the in-plane occupancy

of site i is defined as

ŵi = w∗
i

w∗
P

= w∗
i

�j∈Pw∗
j

. (8)

It describes the probability of residence at site i normalized by
the total residence probability at the corresponding plane. ŵi

is an important quantity, as shown below.
For any two planes P and Q (not necessarily contiguous),

the hop rate from P to Q (νPQ) is defined as

νPQ = �i∈Pŵi�j∈Qμij , (9)

w∗
PνPQ = �i∈Pw∗

i �j∈Qμij . (10)

Equation (9) contains the rates (through the rateplicities μij )
for all the hops from any site within plane P to any directly
connected site within plane Q. Every rateplicity is multiplied
by the corresponding in-plane occupancy (ŵi). Figure 2(f)
provides a few examples of this definition in practice. Note
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that, through this definition, the problem of diffusion is reduced
to a 1D analysis. As an example, the propagation along X
in the 2D system shown in Fig. 2(f) can be replaced with
the 1D system displayed right below it. The same applies to
the system shown in Fig. 2(k) for propagation along Y. Note
also that the rates of the hops perpendicular to the direction
of propagation can be completely disregarded, e.g., we may
set them to 0. For instance, Figs. 2(d)–2(f) (for propagation
along X) do not use/display any hop along the Y direction.
Similarly, Figs. 2(g)–2(m) (for propagation along Y) do not
use/display any hop along the X dimension. We stress that,
given a propagation direction, the 1D representation becomes
an essential tool.

5. Detailed balance for the inner planes

The flux of particles out of (into) plane P is defined as

J out
P = w∗

P�Q 
=PνPQ, J in
P = �Q 
=Pw∗

QνQP. (11)

Due to detailed balance the net flux (J net
P = J out

P − J in
P ) must

be 0,

0 = w∗
P�Q 
=PνPQ − �Q 
=Pw∗

QνQP, (12)

which, for any inner plane (P ∈ K), can be rewritten as

w∗
PR


=
P − �

Q 
=P
Q∈Kw∗

QνQP = w∗
TνTP + w∗

T′νT′P, (13)

where R

=
P = �Q 
=PνPQ is the total rate out of plane P.

Equation (13) is a useful statement of detailed balance for
any inner plane P ∈ K and is used repeatedly below.

6. Effective hop rate for planes

As for the terminal sites, we define ν+
TT′,l (ν−

T′T,l) to be
the forward (backward) effective hop rate along direction l

for plane T (T′). The forward and backward rates must be
equal, thus defining the effective hop rate for plane T: ν∗

TT,l =
ν+

TT′,l = ν−
T′T,l . Note that the multiplicity of ν∗

TT,l is also 2.
Based on Eq. (9), we can express the effective hop rate for the
plane in terms of the effective hop rates for the sites:

ν∗
TT,l =

∑
i∈T

ŵiν
∗
ii,l = 1

w∗
T

∑
i∈T

w∗
i ν

∗
ii,l , (14)

w∗
Tν∗

TT,l =
∑
i∈T

w∗
i ν

∗
ii,l . (15)

7. Boundary crossings

Let us consider the terminal plane T of a given unit cell. We
define Xtot ∪ Btot as the total collection of boundary crossing
sites, which contains all origin and destination sites for the
hops that cross T and are not cell commensurate, if they exist.
Xtot contains the lower crossers (located from T towards the
negative end of the propagation direction) and Btot includes
the upper crossers. Accordingly, Xtot is defined to hold all the
lower crosser planes, and Btot, all the upper crosser planes.

As an example, in Fig. 2(g) (propagation along Y) the
terminal planes A and A′ are crossed by the hops between site 1
and site 3, located at planes D and B, respectively. Thus,Xtot =
{1}, Btot = {3}, Xtot = {D}, and Btot = {B}. Similarly, for
Fig. 2(h) we have Xtot = {2a,2b}, Btot = {4a,4b}, Xtot = {A},

and Btot = {C}. For Fig. 2(d) (propagation along X), we have
Xtot = Btot = Xtot = Btot = ∅ (empty). For an example with
two upper crosser planes, we may consider the system shown
in Fig. 3(a). If we place the lower terminal of the cell at site 2
(plane B), then we would have Btot = {C,D} (with Xtot = {A}).

8. Primary and complementary unit cells

If boundary crossings take place we refer to the chosen
unit cell as the primary cell and define the so-called upper and
lower complementary unit cells. Given the planes A, B, C, . . . ,
X, A′, the upper complementary cell is the result of shifting
the perimeter of the primary cell from A to B. For the unit cell
shown in Fig. 2(g), this means the unit cell shown in Fig. 2(h).
Similarly, the lower complementary cell is defined by shifting
the perimeter from A to X. For the cell in Fig. 2(g), the result
is the cell shown in Fig. 2(m). Note that, by construction,
the primary cell can be considered the upper complementary
cell of the lower cell. Similarly, the primary cell can also be
viewed as the lower complementary cell of the upper cell.
Thus, the roles of the primary and complementary cells can
be exchanged. They are equally important. For convenience,
however, we simply assign them one role or the other. The
diffusivity itself does not depend on the choice of the primary
cell or the selection of the corresponding complementary cell
(see Secs. II E and II F). Without loss of generality, for a
given primary cell we focus below on the use of the lower
complementary cell.

When boundary crossings occur the adparticle can penetrate
into the primary cell by a different route than just visiting the
terminal sites. Thus, the boundary crossers make a contribution
to the diffusivity. In practice, a convenient way to determine
this contribution is by considering the (lower) complementary
cell and assigning its terminal plane (X) and sites (i ∈ X ) the
corresponding effective hop rates (ν∗

XX,l and ν∗
ii,l , respectively).

As for the previous cases, the multiplicities of ν∗
XX,l and ν∗

ii,l

are 2, since the hops will take place in both the forward and the
backward directions. As in Eq. (15), we can express the sum
of the effective hop rates for the sites in terms of the effective
hop rate for the plane:

w∗
Xν∗

XX,l =
∑
i∈X

w∗
i ν

∗
ii,l . (16)

9. Hop-commensurate paths

Based on the 1D representation, where the hops occur
between planes, we define a forward path as a series of c � 1
concatenated hops in the forward direction, with the longest
path having the length of the unit cell. Similar definitions
are valid for the backward direction. Examples of paths
for Fig. 2(f) are ABCA′ and BCA′. In Sec. III we derive
expressions for the effective hop rate of such paths. For
instance, it is shown that νABC = νABνBC/(νBA + νBC). Now,
considering Fig. 2(k), we note that some paths provide parallel
routes to longer hops. We say that the path and the hop are
commensurate. For instance, the path ABC is commensurate
to the hop AC. In general, for a long hop forwards with
rate νAL and a commensurate path with rate νAB...L, the
effective hop rate ν+

AL is simply their sum:

ν+
AL = νAL + νAB...L. (17)

205416-6



LOW-COVERAGE SURFACE . . . . II. ANALYTICAL . . . PHYSICAL REVIEW B 93, 205416 (2016)

A
B

C
D

A’

E

F

A
B

C
D

A’

E

F

A
B

C
D

F

E

F’

A B C D E BF A’F A B C D E BF A’F A B C D E BF AF’= +

= +

(a) (b) (c)

A
B
C
D

A’

A
B
C
D

A’

A
B
C

D

D’

A B C D A’ BD A B C D A’ BD A B C D’ A BD= +

= +

(e) (f) (g)

A
lo

ng
 Y

(Along Y)

A
lo

ng
 Y

(Along Y)

X

Y

U V U’Along X

U V U’Along X W X

X

Y

Y

/

(d)

(h)

X

Y

X

Y

FIG. 3. Additional examples of systems with boundary crossings: (a) Selected unit cell (and 1D representation) for transport along Y for
the system studied by Penev et al. [9] (case 4; low temperature). [Case 3, high temperature, is considered in Fig. 5(b).] (b) and (c) Primary
and complementary unit cells (and 1D representations) for the system in (a), after distribution of the hops (see text). (d) Same as (a), but for
transport along X (no boundary crossings). (e) Same as (a), but for a different study by Penev et al. [10] [case 5; reconstruction (2×3)]. [Case
6, reconstruction (1×3), is considered in Fig. 5(c).] (f) and (g) Same as (b) and (c), but for the system in (e). (h) Same as (e), but for transport
along X (no boundary crossings).

This seemingly trivial statement has important consequences,
as shown next (Sec. II B 10).

10. Distributing the hops between the cells

When boundary crossings occur the determination of ν∗
TT,l

(for the primary cell) and ν∗
XX,l (for the complementary cell)

is done by considering the 1D representation (where the hops
are between planes) and distributing the hops between the two
cells according to three rules.

R1: Neither cell may contain hops across its terminals.
R2: Any hop-commensurate path must remain within the

same cell as the corresponding long hop.
R3: The combination of the two cells must contain every

hop once: no more and no less.
In particular, condition R1 is ensured by setting to 0 the

rates of the hops between the site sets Xtot and Btot. Typically,
this involves

R1a: zeroing the boundary crossings, i.e., canceling the
hops across the lower and upper boundaries of the cell.

R1b: zeroing similar hops elsewhere, if those hops occur
between the sites in Xtot and Btot. An example is shown in
Fig. 2(l) for the primary cell, where ν∗

BD = ν∗
DB = 0. Note that,

in the 1D representation shown in Fig. 2(k), the central hop
between plane B (site 3) and plane D (site 1) has been canceled
in Fig. 2(l), even if that hop does not cross the cell terminals.
The reason for this is that site 1 is in set Xtot and site 3, in Btot.
A similar reasoning is applied to the complementary cell in
Fig. 2(m), now with ν∗

AC = ν∗
CA′ = ν∗

A′C = ν∗
CA = 0. Note that

this “zeroing elsewhere” does not affect similar hops between
sites that formerly were equivalent to sites in Xtot and Btot

before relabeling, but are not equivalent afterwards. This is
shown in Fig. 3(a), where the hops between planes F and B are

zeroed out in Fig. 3(b) but the equivalent hop between planes
C and E remains.

R1c: zeroing any resulting disconnected hops, after the
application of R1a and R1b. An example is shown in Fig. 3(c)
for the complementary cell, where νCD, νCE, and νDE (and
the reverse rates) have been zeroed out. These hops cannot
contribute to diffusion along Y.

The decomposition of the system shown in Fig. 2(k) into
those shown in Figs. 2(l) and 2(m) satisfies condition R2 by
keeping every hop-commensurate path in the same cell as
the corresponding long hop. Note that, when combining the
two cells, the hops within the commensurate paths would be
counted twice, and thus, we need to divide their rates by 2
in order to satisfy condition R3. In this manner, the figures
show a factor of 1/2 at every affected rate. Similarly, the
decompositions shown in Figs. 3(a)–3(c) and 3(e)–3(g) have
been carried out taking into account conditions R1–R3.

Any other decomposition of the hops between the two
cells disregarding conditions R1–R3 will result in an error.
For instance, if the commensurate path ABC is completely
removed from Fig. 2(l) [and fully considered in Fig. 2(m)],
then the effective rate [Eq. (17)] between planes A and C in
Fig. 2(l) will be ν+

AC = νAC, which wrongly disregards the fact
that the adparticle may propagate along the parallel route ABC
in addition to the direct hop AC.

C. Expressing the diffusivity in terms of the effective hop rates

After the previous definitions we are now in a position
to describe the low coverage tracer diffusivity (Dθ≈0

T ) in
terms of the effective hop rates. For this purpose, the
diffusivity is written out in terms of its Cartesian components
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(Dθ≈0
T ,x , Dθ≈0

T ,y , . . .) as

Dθ≈0
T = 1

α
�α

l=1D
θ≈0
T ,xl

, (18)

where α is the dimensionality and Dθ≈0
T ,xl

is the lth Cartesian
component (l = 1, . . . ,α; x1 = x, x2 = y, x3 = z):

Dθ≈0
T ,xl

= 1

2
lim
t→∞

〈(xl(t) − xl(0))2〉
t

(19)

= 1

2

(∑
i∈C

wiμii +
∑
i∈T

w∗
i μ

∗
ii,l+

∑
i∈X

w∗
i μ

∗
ii,l

)
a2

l (20)

=
(∑

i∈C
wiνii +

∑
i∈T

w∗
i ν

∗
ii,l+

∑
i∈X

w∗
i ν

∗
ii,l

)
a2

l (21)

=
( ∑

i∈C∪T ∪X
w∗

i ν
∗
ii,l

)
a2

l . (22)

Here, Eq. (1) has been used to go from Eq. (18) to Eq. (19).
Similarly, Eq. (2) has been used to write out Eq. (20),
expressing Dθ≈0

T ,xl
as the sum of three terms. The first term,

1
2 (�i∈Cwiμii)a2

l , considers the contribution to the diffusivity
from the cell-commensurate sites, i ∈ C, with occupancies wi

and rateplicities μii = 2νii . The value of the multiplicity, 2,
is used to go from Eq. (20) to Eq. (21). The second term,
1
2 (�i∈T w∗

i μ
∗
ii,l)a

2
l , contains the contribution from the terminal

sites, i ∈ T . The formula uses the effective occupancies w∗
i

to deal correctly with those cases where several equivalents
of the terminal sites may appear inside the unit cell. Since the
hops between the terminals have multiplicity 2, the rateplicities
are μ∗

ii,l = 2ν∗
ii,l . The third term, 1

2 (�i∈Xw∗
i μ

∗
ii,l)a

2
l , adds the

contribution from the boundary crossers, i ∈ X , with the
effective occupancies w∗

i and rateplicities μ∗
ii,l = 2ν∗

ii,l . Note
that w∗

i = wi and ν∗
ii,l = νii for the cell-commensurate sites.

For the terminal and crosser sites, w∗
i = wi/ni (as defined in

Sec II B 1) while ν∗
ii,l needs to be determined, as described in

Sec. II D below.
Replacing Eq. (22) into Eq. (18), the diffusivity becomes

Dθ≈0
T = 1

2α
�α

l

( ∑
i∈C∪T ∪X

w∗
i μ

∗
ii,l

)
a2

l (23)

= 1

α
�α

l=1

( ∑
i∈C∪T ∪X

w∗
i ν

∗
ii,l

)
a2

l (24)

= 1

α
�α

l=1νla
2
l , (25)

where νl is defined as the overall rate across the unit cell along
dimension l:

νl =
∑

i∈C∪T ∪X
w∗

i ν
∗
ii,l (26)

=
∑
i∈C

wiνii +
∑
i∈T

w∗
i ν

∗
ii,l+

∑
i∈X

w∗
i ν

∗
ii,l . (27)

Equation (25) is the main result of this study for systems
with asymmetric hops. The diffusivity is the mean of the
Cartesian components νla

2
l for an orthorhombic unit cell with

lattice parameters al , the overall rate νl along dimension l

being an occupancy-weighted sum over the effective rates ν∗
ii,l

[Eq. (27)]. The form in Eq. (23) strongly resembles Eq. (2) for
systems with only symmetric hops, the main difference being
that we can directly use the atomistic hop rates and distances in
the symmetric case, while we need to determine the effective
hop rates and distances for a suitable orthogonal unit cell in the
asymmetric case. Both cases use the occupancies wi (or the
effective occupancies w∗

i = wi/ni), obtained using Eq. (3).
Based on the 1D representation [see Figs. 2(f) and 2(k)],

the Cartesian components of the diffusivity are obtained most
directly by using the effective hop rates for the terminal and
crosser planes [Eqs. (15) and (16)]:

Dθ≈0
T ,xl

=
(∑

i∈C
wiνii + w∗

Tν∗
TT,l + w∗

Xν∗
XX,l

)
a2

l . (28)

In practice, Eq. (28) provides a fundamental workhorse and is
routinely used in this study.

D. General expression for the effective hop rate

The previous section has shown that, if boundary crossings
occur, the original unit cell can be considered as the com-
bination of a primary and a complementary cell, for which
no boundary crossings take place. For each cell, the effective
hop rate is calculated following the same general procedure,
which is described here. Particular examples of this general
procedure are provided in Secs. II E and II F.

For a unit cell without boundary crossings for propagation
direction l, we consider the special plane S located between
the lower terminal plane T and the next plane in the positive
propagation direction. Examples are shown in Figs. 2(f), 2(l),
and 2(m) for propagation along X and Y, respectively. We
define F as the collection of sites that serve as the destination
of the hops crossing S. For instance, F = {2,4} for Fig. 2(f),
F = {3,4a,4b} for Fig. 2(l), and F = {2a,2b,3} for Fig. 2(m).
Also, we define F as the set of destination planes, e.g., F =
{B} for Fig. 2(f), F = {B,C} for Fig. 2(l), and F = {A,B} for
Fig. 2(m).

Now the net flux through S along l must be 0 due to detailed
balance:

0 = J l+
S − J l−

S = w∗
T�P∈FνTP − �P∈Fw∗

PνPT. (29)

However, from the point of view of the forward and backward
effective hop rates, ν+

TT′,l and ν−
T′T,l , the hops occur between

the cell terminals, and thus, the only hops crossing plane S are
the effective hops themselves. Correspondingly, the net flux
can also be written as

0 = w∗
Tν+

TT′,l − w∗
T′ν

−
T′T,l . (30)

Comparison of Eqs. (29) and (30) suggests that expressing
the effective occupancy of the destination planes in Eq. (29)
(w∗

P with P ∈ F) in terms of the occupancies of the upper and
lower terminal planes in Eq. (30) (w∗

T and w∗
T′) will enable

identification of the forward and backward effective hop rates
of Eq. (30) (ν+

TT′,x and ν−
T′T,x) with corresponding expressions

in Eq. (29). To do this, let us consider Eq. (13) (detailed
balance) for all inner planes P ∈ K = {B,C, . . . ,X}, which, in
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matrix form, gives ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

R

=
B −νCB · · · −νKB

−νBC R

=
C · · · −νKC

...
...

. . .
...

−νBX −νCX · · · R

=
X︸ ︷︷ ︸

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
w∗

B

w∗
C
...

w∗
X︸︷︷︸

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
w∗

TνTB + w∗
T′νT′B

w∗
TνTC + w∗

T′νT′C
...

w∗
TνTX + w∗

T′νT′X︸ ︷︷ ︸

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

A∗ x b∗

(31)

Using Cramer’s rule, the solution to Eq. (31) is

w∗
P = B∗

P

B∗ , (32)

where

B∗ = det(A∗), (33)

B∗
P = det(A∗

P) = det(A∗([b∗]c(P))). (34)

Here, det(A∗) is the determinant of A∗ and A∗
P = A∗([b∗]c(P))

is the matrix that results from substitution of column c(P)
in matrix A∗ by vector b∗, where c(P) is the column
corresponding to plane P.

Since b∗ in Eq. (31) may only contain linear combinations
of the occupancies of the lower and upper terminal planes,
w∗

T and w∗
T′ , the determinants B∗

P can be expressed as linear
combinations of those occupancies,

B∗
P = B∗

P,T�w∗
T + B∗

P,�T′w
∗
T′, (35)

where the coefficients B∗
P,T� and B∗

P,�T′ are defined as

B∗
P,T� = B∗

P(w∗
T = 1,w∗

T′ = 0),

B∗
P,�T′ = B∗

P(w∗
T = 0,w∗

T′ = 1). (36)

Note that B∗
P,T� (B∗

P,�T′) is the value of the determinant B∗
P

when the occupancy is 1 at the lower (upper) terminal plane
and 0 at the upper (lower) terminal plane. See Sec. II E for
examples of B∗

P,T� and B∗
P,�T′ in practice.

Now, inserting B∗
P from Eq. (35) into Eq. (32) shows that

the occupancies of the inner planes (P ∈ K = {B,C, . . . ,G})
are also linear combinations of the occupancies of the lower
and upper boundary planes:

w∗
P = B∗

P,T�
B∗ w∗

T + B∗
P,�T′

B∗ w∗
T′ . (37)

Finally, substitution of Eq. (37) into Eq. (29) gives

0 = w∗
T�P∈F

(
νTP − B∗

P,T�
B∗ νPT

)
− w∗

T′�P∈F
B∗

P,�T′

B∗ νPT.

(38)

Equation (38) is instrumental. Comparing it to Eq. (30)
directly provides the searched expressions for the forward and
backward effective hop rates:

ν∗
TT,l = ν+

TT′,l =
∑
P∈F

νTP −
∑
P∈F

B∗
P,T�
B∗ νPT (39)

= ν−
T′T,l =

∑
P∈F

B∗
P,�T′

B∗ νPT. (40)

The first term in Eq. (39) (
∑

P∈F νTP) contains the rates of all
direct hops from the lower terminal plane T to all destination
planes (P ∈ F) across the special plane S. The second term
(
∑

P∈F(B∗
P,T�/B∗)νPT) contains the rates for all the hops from

those destination planes (P ∈ F) to the lower terminal plane
T across S. Every rate (νPT) is multiplied by the coefficient
B∗

P,T�/B∗. The second term is negative because the hops occur
in the opposite direction to those in the first term. In Eq. (40)
the first term is not present and the second term uses the
opposite sign. The second term in Eq. (39) differs from the
one in Eq. (40) in the use of different coefficients, namely,
(B∗

P,T�/B∗) in Eq. (39) and (B∗
P,�T′/B

∗) in Eq. (40).
Equations (39) and (40) provide two equivalent expressions

to determine the effective hop rate ν∗
TT,l directly from the

hop rates across plane S and the determinants B∗ = det(A∗)
and B∗

P = det(A∗
P), evaluated at the lower terminal plane T to

obtain B∗
P,T� [Eq. (39)] or at the upper terminal plane T′ to

obtain B∗
P,�T′ [Eq. (40)].

Alternatively, if we define M as the inverse of A∗, the
coefficients can be calculated using

B∗
P,T�
B∗ =

∑
Q∈K

MPQνTQ,
B∗

P,�T′

B∗ =
∑
Q∈K

MPQνT′Q. (41)

In summary, we have shown that the effective hop rate
between the terminals of a unit cell can be determined by (i)
considering the net flux of particles across the special plane
S, (ii) expressing the occupancies of the destination planes
in terms of the occupancies of the lower and upper terminals,
(iii) substituting the resulting expressions into the net flux, thus
leading to an expression that contains only the occupancies of
the lower and upper terminals, and (iv) reading off the effective
hop rates as the coefficients that multiply those occupancies.

E. Example: Propagation along X

In this section we derive Eqs. (39) and (40) for propagation
along X in the unit cell shown in Fig. 2(f). First, using Eq. (3)
with j = 1 we determine all the site occupancies,

w1 = ν21ν31ν41

B
, w2 = 2ν12ν31ν41

B
,

w3 = ν21ν13ν41

B
, w4 = 2ν21ν31ν14

B
,

⎫⎪⎬⎪⎭ (42)
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with B = ν21ν31ν41 + 2ν12ν31ν41 + ν21ν13ν41 + 2ν21ν31ν14.
Thus, the effective site occupancies are

w∗
1 = w∗

1′ = w1

1
= ν21ν31ν41

B
,

w∗
2 = w∗

2′ = w2

2
= ν12ν31ν41

B
,

w∗
3 = w∗

3′ = w3

1
= ν21ν13ν41

B
,

w∗
4 = w∗

4′ = w4

2
= ν21ν31ν14

B
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(43)

Correspondingly, the occupancies of the terminal plane
(T = A or T′ = A′) and inner planes (B and C) are

w∗
A = w∗

A′ = w∗
1 + w∗

3 = ν21ν31ν41 + ν21ν13ν41

B
,

w∗
B = w∗

C = w∗
2 + w∗

4 = ν12ν31ν41 + ν21ν31ν14

B
.

⎫⎪⎬⎪⎭ (44)

Note that w∗
A + w∗

B + w∗
C = 1. Finally, the in-plane site occu-

pancies are (using ν12ν
v
24ν41 = ν14ν

v
42ν21; see Sec. PI–II D):

ŵ1 = w∗
1

w∗
A

= ν31

ν13 + ν31
,

ŵ2 = w∗
2

w∗
B

= ν41ν12

ν41ν12 + ν21ν14
= νv

42

νv
24 + νv

42

,

ŵ3 = w∗
3

w∗
A

= ν13

ν13 + ν31
,

ŵ4 = w∗
4

w∗
B

= ν21ν14

ν41ν12 + ν21ν14
= νv

24

νv
24 + νv

42

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

Equation (45) shows that normally the in-plane occupancies
can be expressed in terms of the hop rates along the chosen
plane. Now, to simplify the presentation, let us define the
following names for the rates between the planes:

p = νBA = νCA′ = ŵ2(ν21 + ν23) + ŵ4(ν41 + ν43),

q = νBC = νCB = ŵ2ν2 + ŵ4ν4,

r = νAB = νA′C = ŵ1(ν12 + ν14) + ŵ3(ν32 + ν34),

⎫⎪⎬⎪⎭ (46)

where ν2 = νh
22 + 2νd

22 + 2νd
24 and ν4 = νh

44 + 2νd
44 + 2νd

42.
Then, due to detailed balance, the net flux through plane S
along X in Fig. 2(f) must be 0:

0 = J x+
S − J x−

S = w∗
AνAB − w∗

BνBA. (47)

In terms of the forward and backward effective hop rates, ν+
AA′,x

and ν−
A′A,x , the net flux can also be written as

0 = w∗
Aν+

AA′,x − w∗
A′ν

−
A′A,x . (48)

Based on Eqs. (47) and (48), we would like to express w∗
B

in terms of w∗
A and w∗

A′ . To do this, we write down Eq. (31)
(detailed balance) for all inner planes P ∈ {B,C}. In matrix

form, this reads⎛⎜⎝ p + q −q

−q p + q︸ ︷︷ ︸
⎞⎟⎠

⎛⎜⎝ w∗
B

w∗
C︸︷︷︸

⎞⎟⎠=

⎛⎜⎝w∗
Ar

w∗
A′r︸︷︷︸

⎞⎟⎠.

A∗ x b∗

(49)

Since b∗ in Eq. (49) [cf. Eq. (31)] contains only linear terms
in the occupancies of the lower and upper terminal planes, w∗

A
and w∗

A′ , the occupancies of the inner planes (P ∈ K = {B,C})
are also linear combinations of the occupancies of the lower
and upper boundary planes,

w∗
P = B∗

P,A�
B∗ w∗

A + B∗
P,�A′

B∗ w∗
A′ , (50)

where all symbols are defined in Eqs. (33)–(36). Here

B∗ = det(A∗) =
∣∣∣∣p + q −q

−q p + q

∣∣∣∣ = p(p + 2q), (51)

B∗
B = det(A∗([b∗]1)) =

∣∣∣∣w∗
Ar −q

w∗
A′r p + q

∣∣∣∣
= r(p + q)w∗

A + rqw∗
A′ , (52)

B∗
C = det(A∗([b∗]2)) =

∣∣∣∣p + q w∗
Ar

−q w∗
A′r

∣∣∣∣
= rqw∗

A + r(p + q)w∗
A′ , (53)

B∗
B,A� = B∗

B(w∗
A = 1,w∗

A′ = 0) = r(p + q), (54)

B∗
B,�A′ = B∗

P(w∗
A = 0,w∗

A′ = 1) = rp, (55)

B∗
C,A� = B∗

C(w∗
A = 1,w∗

A′ = 0) = rq, (56)

B∗
C,�A′ = B∗

P(w∗
A = 0,w∗

A′ = 1) = r(p + q). (57)

Finally, substitution of Eq. (50) for plane P = B into Eq. (47)
gives

0 = w∗
A

(
νAB − B∗

B,A�
B∗ νBA

)
− w∗

A′

(
B∗

B,�A′

B∗ νBA

)
. (58)

Comparing Eqs. (58) and (48) directly provides the expressions
for the forward and backward effective hop rates:

ν∗
AA,x = ν+

AA′,x = νAB − B∗
B,A�
B∗ νBA (59)

= ν−
A′A,x = B∗

B,�A′

B∗ νBA. (60)

Equations (59) and (60) are examples of Eqs. (39) and (40)
in practice. Note that ν+

AA′,x and ν−
A′A,x should be equal,

thus providing the same value for ν∗
AA,x . Substitution of the

expressions for B∗, B∗
B,A�, and B∗

B,�A′ from Eqs. (51), (54),
and (55), and use of Eq. (46) finally gives

ν∗
AA,x = rq

p + 2q
= [ŵ1(ν12 + ν14) + ŵ3(ν32 + ν34)][ŵ2ν2 + ŵ4ν4]

ŵ2(ν21 + ν23 + 2ν2) + ŵ4(ν41 + ν43 + 2ν4)
. (61)

Thus, using Eq. (28), the X component of the diffusivity is (no cell-commensurate sites, T = A, and no crossers),

Dθ≈0
T ,x = w∗

Aν∗
AA,x(2a)2 = 4ν21ν41[ν31(ν12 + ν14) + ν13(ν32 + ν34)]

[
νd

42ν2 + νd
24ν4

]
B

[
νd

42(ν21 + ν23 + 2ν2) + νd
24(ν41 + ν43 + 2ν4)

] a2, (62)
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where we have used Eq. (45) to write out the values for the in-
plane occupancies (ŵ1 through ŵ4), B is given in Eq. (42), and
ν2 and ν4 are given in Eq. (46). Appendix 1 in the Supplemental
Material [14] shows that the final formula for the diffusivity is
independent of the choice of unit cell.

F. Example: Propagation along Y

In this section we use Eqs. (39) and (40) to determine the
effective hop rates for propagation along the Y direction for
the unit cell shown in Fig. 2(k). Since boundary crossings
occur the unit cell has been decomposed into the primary
and complementary cells, as shown in Figs. 2(l) and 2(m),
respectively. Figure 2(c) shows that the hops ν11, ν33, νv

22,
νd

22, νv
44, and νd

44 are cell-commensurate along Y, and, thus,
their contribution to the diffusivity is well defined in Eq. (28),
i.e., (w1ν11 + w2ν

vd
22 + w3ν33 + w4ν

vd
44 )a2, where νvd

22 = νv
22 +

νd
22 and νvd

44 = νv
44 + νd

44. Below, we first determine ν∗
TT,y for

the primary cell and then ν∗
XX,y for the complementary cell.

Finally, we gather together all the contributions of Eq. (28) and
provide an expression for the diffusivity, demonstrating that
the expression is independent of the choice of primary and/or
complementary unit cell.

The site occupancies and effective occupancies for Fig. 2(l)
are given in Eqs. (42) and (43). The occupancies of the terminal
plane (T = A or T′ = A′) and inner planes (B, C, and D) are

w∗
A = w∗

A′ = w∗
2a + w∗

2b = w2 = 2ν12ν31ν41

B
,

w∗
B = w∗

3 = w3 = ν21ν13ν41

B
,

w∗
C = w∗

4a + w∗
4b = w4 = 2ν21ν31ν14

B
,

w∗
D = w∗

1 = w1 = ν21ν31ν41

B
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(63)

Note that w∗
A + w∗

B + w∗
C + w∗

D = 1. Similarly, the in-plane
site occupancies are

ŵ2a = w∗
2a

w∗
A

= 1

2
, ŵ2b = w∗

2b

w∗
A

= 1

2
, ŵ3 = w∗

3

w∗
B

= 1,

ŵ4a = w∗
4a

w∗
C

= 1

2
, ŵ4b = w∗

4b

w∗
C

= 1

2
, ŵ1 = w∗

1

w∗
D

= 1.

⎫⎪⎪⎬⎪⎪⎭
(64)

Now, using the in-plane occupancies [Eq. (64)], all the rates
between the planes are as follows:

Forward Backward
νAB = ŵ2aν23 + ŵ2bν23 = ν23 νA′D = ŵ2a′ν21 + ŵ2b′ν21 = ν21

νBC = ŵ32ν34 = 2ν34 νDC = ŵ12ν14 = 2ν14

νCD = ŵ4aν41 + ŵ4bν41 = ν41 νCB = ŵ4aν43 + ŵ4bν43 = ν43

νDA′ = ŵ12ν12 = 2ν12 νBA = ŵ32ν32 = 2ν32

νAC = ŵ2aν
vd
24 + ŵ2bν

vd
24 = νvd

24 νA′C = ŵ2a′νvd
24 + ŵ2b′νvd

24 = νvd
24

νCA′ = ŵ4aν
vd
42 + ŵ4bν

vd
42 = νvd

42 νCA = ŵ4aν
vd
42 + ŵ4bν

vd
42 = νvd

42

(65)

where νvd
24 = νv

24 + νd
24 and νvd

42 = νv
42 + νd

42. Then, using Eqs. (39) and (40), the effective hop rate between the terminal planes
is given by

ν∗
AA,y = ν+

AA′,y = νAB

2
+ νAC − B∗

B,A�
B∗

νBA

2
− B∗

C,A�
B∗ νCA, (66)

= ν−
A′A,y = B∗

B,�A′

B∗
νBA

2
+ B∗

C,�A′

B∗ νCA, (67)

where the determinants B∗, B∗
B,A�, B∗

C,A�, B∗
B,�A′ , and B∗

C,�A′ refer to the following matrix equation [detailed balance for the
inner planes B, C, and D; Eq. (31)]:⎛⎜⎜⎜⎝

νBA+νBC
2 − νCB

2 0

− νBC
2 p − νDC

2

0 − νCD
2

νDC+νDA′
2︸ ︷︷ ︸

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

w∗
B

w∗
C

w∗
D︸︷︷︸

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
w∗

A
νAB

2

w∗
AνAC + w∗

A′νA′C

w∗
A′

νA′D
2︸ ︷︷ ︸

⎞⎟⎟⎟⎠,

A∗ x b∗

(68)

where p = (νCB + νCD)/2 + νCA + νCA′ . Note that in Eqs. (66)–(68) we have divided by 2 the hop rates indicated in Fig. 2(l),
due to distributing the hops between the primary and the complementary cells (see Sec. II B 10). Using Eq. (65) to calculate the
determinants and substituting them into Eqs. (66) and (67) finally gives (T = A)

ν∗
TT,y = ν∗

AA,y = 1

2

[
2νvd

24 (ν32 + ν34) + ν23ν34
][

2νvd
42 (ν12 + ν14) + ν41ν12

][
2νvd

42 (ν32 + ν34) + ν43ν32
]
(ν12 + ν14) + [

2νvd
42 (ν12 + ν14) + ν41ν12

]
(ν32 + ν34)

. (69)
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We focus now on obtaining the effective hop rate for the complementary cell shown in Fig. 2(m). The occupancies of the
terminal plane (T = D or T′ = D′) and inner planes (A, B, and C) are

w∗
D = w∗

D′ = w∗
1 = w1 = ν21ν31ν41

B
,

w∗
A = w∗

2a + w∗
2b = w2 = 2ν12ν31ν41

B
,

w∗
B = w∗

3 = w3 = ν21ν13ν41

B
,

w∗
C = w∗

4a + w∗
4b = w4 = 2ν21ν31ν14

B
. (70)

In turn, the rates between the planes are as follows:

Forward Backward
νDA = ŵ12ν12 = 2ν12 νD′C = ŵ12ν14 = 2ν14

νAB = ŵ2aν23 + ŵ2bν23 = ν23 νCB = ŵ4aν43 + ŵ4bν43 = ν43

νBC = ŵ32ν34 = 2ν34 νBA = ŵ32ν32 = 2ν32

νCD′ = ŵ4aν41 + ŵ4bν41 = ν41 νAD = ŵ2a′ν21 + ŵ2b′ν21 = ν21

νDB = ŵ1ν13 = ν13 νD′B = ŵ1ν13 = ν13

νBD′ = ŵ3ν31 = ν31 νBD = ŵ3ν31 = ν31

(71)

where we have used Eq. (64) to substitute the in-plane occupancies of the sites. Using now Eqs. (39) and (40), the effective hop
rate between the terminals is

ν∗
DD,y = ν+

DD′,y = νDA

2
+ νDB − B∗

A,D�
B∗

νAD

2
− B∗

B,D�
B∗ νBD, (72)

= ν−
D′D,y = B∗

A,�D′

B∗
νAD

2
+ B∗

B,�D′

B∗ νBD, (73)

where the determinants B∗, B∗
A,D�, B∗

B,D�, B∗
A,�D′ , and B∗

B,�D′ now refer to the following matrix equation for detailed balance
at the inner planes A, B and C:⎛⎜⎜⎜⎝

νAD+νAB
2 − νBA

2 0

− νAB
2 q − νCB

2

0 − νBC
2

νCB+νCD′
2︸ ︷︷ ︸

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

w∗
A

w∗
B

w∗
C︸︷︷︸

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
w∗

D
νDA

2

w∗
DνDB + w∗

D′νD′B

w∗
D′

νD′C
2︸ ︷︷ ︸

⎞⎟⎟⎟⎠.

A∗ x b∗

(74)

Here, q = (νBA + νBC)/2 + νBD + νBD′ . Making use of Eq. (71) to calculate the determinants and substituting them into Eqs. (72)
and (73) finally leads to (X = D)

ν∗
XX,y = ν∗

DD,y = [ν13(ν21 + ν23) + ν12ν23][ν31(ν41 + ν43) + ν34ν41]

[ν31(ν21 + ν23) + ν32ν21](ν41 + ν43) + [ν31(ν41 + ν43) + ν34ν41](ν21 + ν23)
. (75)

Now, using Eq. (28), the Y component of the diffusivity is

Dθ≈0
T ,y = (

w1ν11 + w2ν
vd
22 + w3ν33 + w4ν

vd
44 + w∗

Aν∗
AA,y + w∗

Dν∗
DD,y

)
a2, (76)

where the site occupancies w1, . . . ,w4 are given in Eq. (42), the effective plane occupancies w∗
A and w∗

D are given in Eq. (63),
the effective hop rates ν∗

AA,y and ν∗
DD,y are given in Eqs. (69) and (75), respectively, and νvd

22 = νv
22 + νd

22, νvd
44 = νv

44 + νd
44,

νvd
24 = νv

24 + νd
24 and νvd

42 = νv
42 + νd

42.
Note that Eq. (76) was obtained by using the primary cell shown in Fig. 2(l) and the lower complementary cell shown in

Fig. 2(m). If we now focus on the use of the upper complementary cell, then, after distribution of the hops, the primary cell will
look just like the one in Fig. 2(l) and the upper complementary cell will be similar to that in Fig. 2(m), but with the terminals
coinciding with plane B. Thus, the diffusivity will be

Dθ≈0
T ,y = (

w1ν11 + w2ν
vd
22 + w3ν33 + w4ν

vd
44 + w∗

Aν∗
AA,y + w∗

Bν∗
BB,y

)
a2, (77)

where the effective hop rate between the B planes is calculated by a procedure similar to that for ν∗
AA,y and ν∗

DD,y above, leading
to

ν∗
BB,y = [ν31(ν41 + ν43) + ν34ν41][ν13(ν21 + ν23) + ν12ν23]

[ν13(ν21 + ν23) + ν12ν23](ν41 + ν43) + [ν13(ν41 + ν43) + ν14ν43](ν21 + ν23)
. (78)
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Making use of the typical equalities between the products of the hop rates for the fundamental paths (such as ν32ν21ν13 = ν31ν12ν23

and ν34ν41ν13 = ν31ν14ν43; see Sec. PI–2 D), it can be easily shown that the terms w∗
Dν∗

DD,y [in Eq. (76)] and w∗
Bν∗

BB,y [in Eq. (77)]
are identical. This demonstrates that the diffusivity does not depend on the choice of lower/upper complementary unit cell.

Moreover, if we choose the unit cell shown in Fig. 2(h), then the diffusivity can be formulated as

Dθ≈0
T ,y = (

w1ν11 + w2ν
vd
22 + w3ν33 + w4ν

vd
44 + w∗

Bν∗
BB,y + w∗

Cν∗
CC,y

)
a2, (79)

where the effective hop rate between the C planes is calculated as

ν∗
CC,y = 1

2

[
2νvd

24 (ν32 + ν34) + ν23ν34
][

2νvd
42 (ν12 + ν14) + ν41ν12

][
2νvd

24 (ν32 + ν34) + ν23ν34
]
(ν12 + ν14) + [

2νvd
24 (ν12 + ν14) + ν21ν14

]
(ν32 + ν34)

. (80)

Again, making use of ν23ν34ν
vd
42 = νvd

24 ν43ν32 and ν21ν14ν
vd
42 =

νvd
24 ν41ν12, one can easily show that the terms w∗

Aν∗
AA,y [in

Eq. (77)] and w∗
Cν∗

CC,y [in Eq. (79)] are identical. This
demonstrates that the diffusivity does not depend on the choice
of primary unit cell.

G. Algorithm (M-1)

The procedure presented in Secs. II B–II D to obtain the
effective hop rates can be summarized as the algorithm
reported in Table I. The procedure is referred to as M-1 to
differentiate it from an alternative method described in Sec. IV.
As far as we can tell, procedure M-1 can be used to find
the effective hop rates for any periodic system. This can be

TABLE I. Procedure M-1 to determine the effective hop rates
ν∗

TT,l and ν∗
XX,l .

Determine wi [site occupancies, Eq. (3)].
Define an orthorhombic unit cell.

(1) For every dimension l (X,Y, and Z):
Relabel all equivalent sites. Determine w∗

i [effective occupancies
of the relabeled sites, Eq. (6)].

Define the planes A, B, C, . . . ,X, A′.
Determine w∗

P [effective occupancies of planes, Eq. (7)].
Determine ŵi [in-plane occupancies, Eq. (8)].
Determine νPQ [hop rates between planes, Eq. (9)].
Consider the 1D representation. If boundary crossings occur, find

the lower complementary cell (with the lower terminal at X).
Distribute the hops between primary and complementary cells
following rules R1–R3 (Sec. II B 10).

(2) For every unit cell (primary/complementary):
Use T (T′) to denote the lower (upper) terminal plane. Use K to

designate the set of inner planes.
Define plane S (Sec. II D). Determine which hops cross S.

Determine the set of destination planes F.
Build matrix A∗ and vector b∗ for all inner planes P ∈ K

[Eq. (31)].
Calculate the determinants B∗ and B∗

P for every inner plane
P ∈ K.

For the lower terminal T,
evaluate B∗

P, T� = B∗
P (w∗

T = 1,w∗
T′ = 0).

For the upper terminal T′,
evaluate B∗

P, �T′ = B∗
P (w∗

T = 0, w∗
T′ = 1).

Determine v∗
TT,l [effective hop rate, Eqs. (39) and (40)]. (For the

complementary cell this directly gives v∗
XX,l .)

(2) End.
(1) End.

done analytically (with pen and paper), if the system is simple
enough, or numerically/symbolically using a computer, for
very complex systems. The availability of two different (but
equivalent) formulas [Eqs. (39) and (40)] can be used as an
advantage to internally check whether the obtained solutions
are correct.

III. LOW COVERAGE DIFFUSIVITY FOR 1D SYSTEMS
WITH ASYMMETRIC HOPS

We now apply procedure M-1, summarized in Table I, to
derive the effective hop rate and diffusivity for 1D systems with
asymmetric hops to the nearest neighbors and no boundary
crossings. As shown in Sec. IV, the expressions obtained
here will provide an alternative procedure for formulating the
effective hop rates (and, thus, the diffusivity) for systems with
asymmetric hops in more dimensions.

A. Effective hop rate for the longest path

Figures 4(a)–4(c) show several examples of 1D periodic
systems with asymmetric hops and a varying number of

1 12 43

S

a

1 12 3

a

1 12

a

(a)

(b)

(c)

......

......

......

νij ν12 ν12 ν21 ν21

mij 1 1 1 1

νij ν12 ν13 ν21 ν23 ν31 ν32

mij 1 1 1 1 1 1

νij ν12 ν13 ν21 ν23 ν32 ν34 ν41 ν43

mij 1 1 1 1 1 1 1 1

1D

+ - + -

FIG. 4. One-dimensional systems with (a) S = 2, (b) S = 3, and
(c) S = 4 adsorption sites. Hops from any site are restricted to the
forward and backward nearest neighbors.
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distinct sites: S = 2 for Fig. 4(a), S = 3 for Fig. 4(b), and
S = 4 for Fig. 4(c). Since all the sites within one unit cell are
different, the effective occupancies for the sites are equal to
their occupancies (w∗

i = wi). In addition, we may define one
plane P per site i, thus having w∗

P = w∗
i = wi . As a result, we

can treat every site as one plane and every plane as one site.
Recalling from Sec. II B 9 that a 1D path is simply a collection
of consecutive hops and that the longest path is defined by
having the length of the unit cell, the periodic systems in Fig. 4
can be considered as periodic paths, obtained by repeating the
longest path for each system. Considering the system with
four distinct planes [Fig. 4(c)] and placing the special plane S
between plane 1 and plane 2, the effective hop rate is obtained
by applying Eq. (39) [or (40)]:

ν∗
11,x = ν+

11,x = ν12 − B∗
2,1�
B∗ ν21 (81)

= ν−
11,x = B∗

2,�1′

B∗ ν21. (82)

This means that we can focus on obtaining expressions for B∗
and B∗

2,1� (or B∗
2,�1′ ). For this purpose, we write Eq. (31) for

all inner planes K = {2,3,4},⎛⎜⎜⎝ν21 + ν23 −ν32 0
−ν23 ν32 + ν34 −ν43

0 −ν34 ν41 + ν43︸ ︷︷ ︸
⎞⎟⎟⎠

⎛⎜⎜⎝ w∗
2

w∗
3

w∗
4︸︷︷︸

⎞⎟⎟⎠=

⎛⎜⎜⎝w∗
1ν12

0
w∗

1′ν14︸ ︷︷ ︸
⎞⎟⎟⎠,

A∗ x b∗
(83)

and substitute vector b∗ (evaluated at {w∗
1,w

∗
1′ } = {1,0}) as the

first column in matrix A∗ to get

A∗
2,1� =

⎛⎝ν12 −ν32 ν12

0 ν32 + ν34 −ν43

0 −ν34 ν41 + ν43

⎞⎠. (84)

Similarly, we substitute vector b∗({0,1}) as the first column in
matrix A∗ to get

A∗
2,�1′ =

⎛⎝ 0 −ν32 ν12

0 ν32 + ν34 −ν43

ν12 −ν34 ν41 + ν43

⎞⎠. (85)

Thus, we obtain

B∗ = det(A∗) = ν23ν34ν41 + ν43ν32ν21

+ ν34ν41ν21 + ν32ν21ν41, (86)

B∗
2,1� = det(A∗

2,1�) = ν12(ν32ν41 + ν32ν43 + ν34ν41), (87)

B∗
2,�1′ = det(A∗

2,�1′ ) = ν14ν43ν32. (88)

Replacing these into Eqs. (81) and (82) we obtain the forward
and backward effective hop rates:

ν+
11,x = ν12ν23ν34ν41

ν23ν34ν41 + ν43ν32ν21 + ν34ν41ν21 + ν32ν21ν41,

(89)

ν−
11,x = ν14ν43ν32ν21

ν23ν34ν41 + ν43ν32ν21 + ν34ν41ν21 + ν32ν21ν41
.

(90)

These are equal (ν+
11,x = ν−

11,x = ν∗
11,x) due to detailed balance

(zero net flux), thus requiring that ν12ν23ν34ν41 = ν14ν43ν32ν21.
This is satisfied for hop rates described using Boltzmann
factors, as shown in Fig. PI–3(g).

For two and three distinct planes [S = 2 and S = 3; see
Figs. 4(a) and 4(b)], applying the same procedure will lead to

ν∗
11,x = ν+

12ν
+
21

ν+
21 + ν−

21

= ν−
12ν

−
21

ν+
21 + ν−

21

, (91)

ν∗
11,x = ν12ν23ν31

ν23ν31 + ν32ν21 + ν31ν21

= ν13ν32ν21

ν23ν31 + ν32ν21 + ν31ν21
. (92)

In general, for S distinct planes we can write

ν∗
ii,x = �S

p=1νpq∑S
j=1 �S+i−1

k=i+1νlm

(i = 1,2, . . . ,S), (93)

where the indices l, m, and q are

l =
{
k if 1 � k � S

k mod S if k > S

}
,

m =
{
n if 1 � n � S

n mod S if n > S

}
,

n =
{
k − 1 if j + k < S + i + 1
k + 1 if j + k � S + i + 1

}
,

q =
{
p + 1 if p < S

1 if p = S

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(94)

Equations (89)–(92) are identical to [and Eq. (93) is equivalent
to] those for the composite rates reported by Condit [11] and
Birnie [12]. Thus, for 1D systems, the effective hop rates
defined in this study are reduced to the previously reported
composite rates. Hence, the procedure summarized in Sec. II G
for α � 1 can be considered as a generalization of the 1D
analysis reported by Condit [11]. Our analysis differs in the fol-
lowing aspects: (i) our expression for the positive/negative/net
flux uses well-defined quantities to describe the probability
that the random walker is at every site or plane. In fact, the
occupancy wi for the site i and the effective occupancy w∗

P
for plane P describe the fraction of time that the random
walker spends at that site or plane; (ii) our formalism provides
explicit expressions for the occupancies [Eqs. (3), PI–(40),
and PI–(41)] and effective occupancies [Eqs. (6)–(8)]; (iii) our
expression for the net flux [Eq. (29)] is guaranteed to be 0 due
to the general principle of detailed balance; (iv) we provide a
general procedure/algorithm for determining the effective hop
rates for any periodic system (procedure M-1, in Table I); and
(v) our procedure applies to any number of dimensions and
contains explicit expressions to determine the effective hop
rates [Eqs. (39) and (40)].

B. Effective hop rate for shorter paths

Let us now consider a forward/backward path that is shorter
than the longest path. An important result is that the effective
hop rate for such a path is still provided by Eq. (93) (or the
equivalent formulas for S � 4). As an example, using Eq. (91)
the effective hop rate for the forward path 123 (backward path
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321) in Fig. 4(b) is

ν123 = ν+
13 = ν12ν23

ν21 + ν23

(
ν321 = ν−

31 = ν32ν21

ν23 + ν21

)
. (95)

Another important result is that the longest path can be split at
any plane and the total effective hop rate (for the longest path)
can still be calculated by using Eq. (91) for the resulting left
and right sections of the path. As an example, we can split the
path 1231 in Fig. 4(b) at plane 3 and describe the effective hop
rate using the left and right sections (123 and 31, respectively):

ν+
11 = ν123ν31

ν321 + ν31
=

ν12ν23
ν21+ν23

ν31

ν32ν21
ν23+ν21

+ ν31

= ν12ν23ν31

ν32ν21 + ν31ν21 + ν31ν23
. (96)

Equivalently, we can split the path at plane 2 and describe
the effective hop rate using the left section (12) and the right
section (231):

ν+
11 = ν12ν231

ν21 + ν231
=

ν12
ν23ν31

ν32+ν31

ν21 + ν23ν31
ν32+ν31

= ν12ν23ν31

ν32ν21 + ν31ν21 + ν31ν23
. (97)

Note that Eqs. (96) and (97) are identical and equal to Eq. (92).
Similarly, longer paths can be split in many ways, all giving
the same effective hop rate. For instance, if we split the path
12341 in Fig. 4(c) at planes 3 and 4, the effective hop rate will
be

ν+
11 = ν123ν341

ν321 + ν341
=

ν12ν23
ν21+ν23

ν34ν41
ν41+ν43

ν32ν21
ν21+ν23

+ ν34ν41
ν41+ν43

(at 3) (98)

= ν1234ν41

ν4321 + ν41
=

ν12ν23ν34
ν23ν34+ν32ν21+ν21ν34

ν41

ν43ν32ν21
ν23ν34+ν32ν21+ν21ν34

+ ν41
(at 4) (99)

= ν12ν23ν34ν41

ν23ν34ν41 + ν43ν32ν21 + ν34ν41ν21 + ν32ν21ν41
. (100)

Note that Eq. (100) is identical to Eq. (89). From these
examples we conclude that, given a 1D periodic system and
unit cell, the longest path can be split in multiple ways, all
giving the same effective hop rate. Together with the additive
formula for the hop rates of parallel paths between two planes
[Eq. (17)], this result allows splitting long paths into short
paths (sections) so that every section is hop commensurate to
a long hop, as described below (Sec. IV).

C. Diffusivity

For completeness, we determine the diffusivity for the
1D systems in Fig. 4. Following with the example for
S = 4 [Fig. 4(c)], we first determine the occupancies using
Eqs. PI–(40) and PI–(41):

wi = Bi

B1 + B2 + B3 + B4
(i = 1,2, . . . ,4), (101)

B1 = det(A1) =
∣∣∣∣∣∣
ν21 + ν23 −ν32 0

−ν23 ν32 + ν34 −ν43

0 −ν34 ν41 + ν43

∣∣∣∣∣∣
= ν23ν34ν41 + ν43ν32ν21 + ν34ν41ν21 + ν32ν21ν41, (102)

B2 = det(A2) =
∣∣∣∣∣∣
ν12 + ν14 0 −ν41

0 ν32 + ν34 −ν43

−ν14 −ν34 ν41 + ν43

∣∣∣∣∣∣
= ν34ν41ν12 + ν14ν43ν32 + ν41ν12ν32 + ν43ν32ν12, (103)

B3 = det(A3) =
∣∣∣∣∣∣
ν12 + ν14 −ν21 −ν41

−ν12 ν21 + ν23 0
−ν14 0 ν41 + ν43

∣∣∣∣∣∣
= ν41ν12ν23 + ν21ν14ν43 + ν12ν23ν43 + ν14ν43ν23, (104)

B4 = det(A4) =
∣∣∣∣∣∣
ν12 + ν14 −ν21 0

−ν12 ν21 + ν23 −ν32

0 −ν23 ν32 + ν34

∣∣∣∣∣∣
= ν12ν23ν34 + ν32ν21ν14 + ν23ν34ν14 + ν21ν14ν34. (105)

Note that other expressions can be obtained for w1 through w4

by using Eq. (3). Nevertheless, all expressions are equivalent
under typical fundamental path transformations (see Sec. PI–
II D). Now, noting that B∗ in Eq. (86) is equal to B1 in Eq. (102),
the diffusivity is (w∗

i = wi , since ni = 1 for all i)

Dθ≈0
T = (�i∈T w∗

i ν
∗
ii,x)a2

= w1ν
∗
11,xa

2

= B1

B1 + B2 + B3 + B4

ν12ν23ν34ν41

B1
a2 (106)

= ν12ν23ν34ν41

B1 + B2 + B3 + B4
a2. (107)

Note that we can also use the following expressions:

Dθ≈0
T = w2ν

∗
22,xa

2

= B2

B1 + B2 + B3 + B4

ν23ν34ν41ν12

B2
a2 (108)

= w3ν
∗
33,xa

2

= B3

B1 + B2 + B3 + B4

ν34ν41ν12ν23

B3
a2 (109)

= w4ν
∗
44,xa

2

= B4

B1 + B2 + B3 + B4

ν41ν12ν23ν34

B4
a2. (110)

Similarly, for 1D systems with S distinct sites, in general, the
diffusivity is

Dθ≈0
T = wiν

∗
ii,xa

2 (i = 1,2, . . . ,S)

= Bi∑S
i=1 Bi

�S
p=1νpq

Bi

a2 (111)

= �S
p=1νpq∑S
i=1 Bi

a2 (112)

= �S
p=1νpq∑S

i=1

(∑S
j=1 �S+i−1

k=i+1νlm

)a2, (113)

where the indices l, m, and q are given in Eq. (94) in terms of
the indices i, j , k, and p.
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MIGUEL A. GOSÁLVEZ et al. PHYSICAL REVIEW B 93, 205416 (2016)

IV. DETERMINATION OF THE EFFECTIVE HOP RATES
BASED ON 1D FORMULAS

Regarding Eqs. (39) and (40), this section provides an
alternative procedure to formulate the effective hop rate
(ν∗

TT,l or ν∗
XX,l)—and thus obtain the diffusivity—by using

combinations of the 1D formulas derived in Sec. III. The key
idea is to describe ν∗

TT,l and ν∗
XX,l using Eq. (93) for S different

planes. If long hops with hop-commensurate paths occur, the
hop rate of every long hop and that of its hop-commensurate
path must be added together in order to correctly calculate
the total hop rate between the planes separated by the long
hop (see Sec. II B 9). Although this operation may split long
paths into shorter paths, this does not affect the contribution
to the diffusivity from the long paths (see Sec. III B). If
boundary crossings occur, Eq. (93) is applied to the primary
and complementary cells separately. If the number of distinct
planes S is 2, 3, or 4 we can directly use Eq. (91), (92), and
(89), respectively.

A. Example: Propagation along X revisited

Let us consider again the example shown in Fig. 2. Focusing
first on the 1D representation for the propagation along X, as
shown in Fig. 2(f), we conclude that there are three distinct
planes (A, B, and C). Thus, S = 3 and we can write the
effective hop rate using Eq. (92):

ν∗
AA,x = νABνBCνCA′

νBCνCA′ + νCBνBA + νBAνCA′

= νABνBBνBA

νBBνBA + νBBνBA + νBAνBA
= νABνBB

νBA + 2νBB
, (114)

where we have used that planes B and C (A and A′) are
equivalent. Using Eq. (9), the hop rates between the planes
are

νAB = ŵ1(ν12 + ν14) + ŵ3(ν32 + ν34), (115)

νBB = ŵ2ν2 + ŵ4ν4, (116)

νBA = ŵ2(ν21 + ν23) + ŵ4(ν41 + ν43), (117)

with ν2 = νh
22 + 2νd

22 + 2νd
24 and ν4 = νh

44 + 2νd
44 + 2νd

42.
Substituting Eqs. (115)–(117) into Eq. (114), we obtain

ν∗
AA,x = [ŵ1(ν12 + ν14) + ŵ1(ν32 + ν34)][ŵ2ν2 + ŵ4ν4]

ŵ2(ν21 + ν23 + 2ν2) + ŵ4(ν41 + ν43 + 2ν4)
,

(118)

which is the same expression as derived in Sec. II E (Eq. 61).
Thus, the diffusivity is also given by Eq. (62). In conclusion,
the use of the 1D formula [Eq. (92)] provides a fast approach to
obtaining the effective hop rate and, in turn, also the diffusivity.

B. Example: Propagation along Y revisited

We focus now on the propagation along Y, using the
1D representation of the primary and complementary cells
shown in Figs. 2(l) and 2(m). This system features hop-
commensurate paths, and thus, the rate of every long hop
and its commensurate path must be added together in order
to correctly calculate the total hop rate between the planes
separated by the long hop (see Sec. II B 9). For instance,

considering the primary cell first [Fig. 2(l)], the hop rate from
plane A to plane C is written

ν+
AC = νAC + 1

2
νABC (119)

= νAC + 1

2

νABνBC

νBA + νBC
(120)

= ŵ2aν
vd
24 + ŵ2bν

vd
24 + 1

2

(ŵ2aν23 + ŵ2bν23)ŵ32ν34

ŵ32ν32 + ŵ32ν34

(121)

= 2νvd
24 (ν32 + ν34) + ν23ν34

2(ν32 + ν34)
, (122)

where we have used Eq. (91) to describe the rate for path ABC:
νABC = νABνBC/(νBA + νBC). Similarly, based on Eq. (9),
we have written νAC = ŵ2aν

vd
24 + ŵ2bν

vd
24 = νvd

24 and νAB =
ŵ2aν23 + ŵ2bν23 = ν23, with ŵ2a = ŵ2b = 1/2 from Eq. (64)
and νvd

24 = νv
24 + νd

24. In addition, based also on Eq. (9), we
have written νBC = ŵ32ν34 = 2ν34 and νBA = ŵ32ν32 = 2ν32,
since ŵ3 = 1 from Eq. (64). Finally, the rate for path ABC is
divided by 2 in order to avoid counting the hops within the
path twice when considering the complementary unit cell (see
Sec. II B 10). This is equivalent to dividing every rate within
the path by 2.

Similarly, the hop rate from plane C to plane A′ is

ν+
CA′ = νCA′ + 1

2
νCDA′ (123)

= νCA′ + 1

2

νCDνDA′

νDC + νDA′
(124)

= ŵ4aν
vd
42 + ŵ4bν

vd
42 + 1

2

(ŵ4aν41 + ŵ4bν41)ŵ12ν12

ŵ12ν14 + ŵ12ν12

(125)

= 2νvd
42 (ν12 + ν14) + ν41ν12

2(ν12 + ν14)
, (126)

where we have used Eq. (91) to describe the rate for path CDA′
[νCDA′ = νCDνDA′/(νDC + νDA′ )], ŵ4a = ŵ4b = 1/2 and ŵ1 =
1 from Eq. (64), and νvd

42 = νv
42 + νd

42. Finally, the rate to hop
from plane C to plane A becomes

ν−
CA = νCA + 1

2
νCBA (127)

= νCA + 1

2

νCBνBA

νBC + νBA
(128)

= ŵ4aν
vd
42 + ŵ4bν

vd
42 + 1

2

(ŵ4aν43 + ŵ4bν43)ŵ32ν32

ŵ32ν32 + ŵ32ν34

(129)

= 2νvd
42 (ν32 + ν34) + ν43ν32

2(ν32 + ν34)
. (130)
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Using Eq. (91) and Eqs. (122), (126), and (130), the effective hop rate across the primary cell becomes

ν∗
AA,y = ν+

ACν+
CA′

ν−
CA + ν+

CA′
(131)

= 1

2

[
2νvd

24 (ν32 + ν34) + ν23ν34
][

2νvd
42 (ν12 + ν14) + ν41ν12

][
2νvd

42 (ν32 + ν34) + ν43ν32
]
(ν12 + ν14) + [

2νvd
42 (ν12 + ν14) + ν41ν12

]
(ν32 + ν34)

. (132)

This is the same as Eq. (69) in Sec. II F. Now, considering the complementary unit cell [Fig. 2(m)], we have

ν∗
DD,y = ν+

DBν+
BD′

ν−
BD + ν+

BD′
(133)

= [ν13(ν21 + ν23) + ν12ν23][ν31(ν41 + ν43) + ν34ν41]

[ν31(ν21 + ν23) + ν32ν21](ν41 + ν43) + [ν31(ν41 + ν43) + ν34ν41](ν21 + ν23)
, (134)

where we have used

ν+
DB = νDB + 1

2
νDAB = νDB + 1

2

νDAνAB

νAD + νAB
(135)

= ŵ1ν13 + 1

2

ŵ12ν12(ŵ2aν23 + ŵ2bν23)

ŵ2aν21+ŵ2bν21+ŵ2aν23+ŵ2bν23
(136)

= ν13(ν21 + ν23) + ν12ν23

ν21 + ν23
, (137)

ν+
BD′ = νBD′ + 1

2
νBCD′ = νBD′ + 1

2

νBCνCD′

νCB + νCD′
(138)

= ŵ3ν31 + 1

2

ŵ32ν34(ŵ4aν41 + ŵ4bν41)

ŵ4aν43 + ŵ4bν43 + ŵ4aν41 + ŵ4bν41

(139)

= ν31(ν41 + ν43) + ν34ν41

ν41 + ν43
, (140)

ν−
BD = νBD + 1

2
νBAD = νBD + 1

2

νBAνAD

νAB + νAD
(141)

= ŵ3ν31 + 1

2

ŵ32ν32(ŵ2aν21 + ŵ2bν21)

ŵ2aν23+ŵ2bν23+ŵ2aν21+ŵ2bν21
(142)

= ν31(ν21 + ν23) + ν32ν21

ν21 + ν23
. (143)

Equation (134) is identical to Eq. (75). Thus, the diffusivity is
given by Eq. (76). Altogether, the previous derivations show
that the 1D formulas obtained in Sec. III provide a fast and
easy procedure for calculating the diffusivity.

C. Other examples

Following the procedure presented in Secs. IV A and IV B,
Appendix 2 in the Supplemental Material [14] shows that the
components of the diffusivity for the systems displayed in
Fig. 3 are as follows.

Figures 3(a)–3(d):

Dθ≈0
T ,x =

(
2νd

21 + νv
21

)(
ν11 + νd

12

) + (
2νd

12 + νv
12

)
νd

21

4νd
12 + 2νv

12 + 2νd
21 + νv

21

4a2
o,

Dθ≈0
T ,y =

(
2νd

21+νv
21

)[
ν11

(
2ν22+2νd

21+νv
21

)+2νv
12

(
ν22+νd

21

)](
4νd

12+2νv
12+2νd

21+νv
21

)(
2ν22+2νd

21+νv
21

) 4a2
o .

(144)

Figures 3(e)–3(h):

Dθ≈0
T ,x = 9ν21ν13ν31(ν11ν22 + ν11ν21 + ν12ν22)

4B(ν11ν22 + ν11ν21 + ν12ν22 + ν13ν22 + ν13ν21)
a2

o,

Dθ≈0
T ,y = ν21

[
ν12ν

2
31 + (2ν12 + ν13)ν33ν31 + ν13ν

2
33

]
B(2ν33 + ν31)

a2
o . (145)

Above, B = ν21ν31 + ν31ν12 + ν21ν13. Similarly, Appendix 3
in the Supplemental Material [14] shows that the components
of the diffusivity for the systems displayed in Fig. 1 are as
follows.

Figure 1(a):

Dθ≈0
T ,x = 4ν12ν23ν32ν21

(ν21 + 2ν23)(ν32ν21 + 2ν32ν12 + 2ν12ν23)
l2,

Dθ≈0
T ,y = 4ν12ν23ν32

ν32ν21 + 2ν32ν12 + 2ν12ν23
l2. (146)

Figure 1(b):

Dθ≈0
T ,x = 4ν12ν21

(
νh

22 + 2νd
22

)
(2ν12 + ν21)

(
ν21 + 2νh

22 + 4νd
22

)a2,

Dθ≈0
T ,y = ν21ν11 + 2ν12

(
νv

22 + νd
22

)
2ν12 + ν21

a2. (147)

Figure 1(c):

Dθ≈0
T ,x = ν31ν

l
11

(
νL

11 + ν13
)

(ν13 + 2ν31)
(
νl

11 + νL
11 + ν13

) (l + L)2,

Dθ≈0
T ,y = ν13ν31

ν13 + 2ν31
a2. (148)

Figure 1(d):

Dθ≈0
T ,x = νabcd

12

νabcd
12 + νabcd

21

νa
21ν

b
12

νa
12 + νb

12

(a + b)2,

Dθ≈0
T ,y = νabcd

12

νabcd
12 + νabcd

21

νc
21ν

d
12

νc
12 + νd

12

(c + d)2. (149)

In addition, Appendix 4 and Fig. 5 in the Supplemental
Material [14] show that the components of the diffusivity for
the corresponding systems are as follows.
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TABLE II. Procedure M-2 to determine the effective hop rates
ν∗

TT,l and ν∗
XX,l .

Determine wi [site occupancies, Eq. (3)].
Define an orthorhombic unit cell.

(1) For every dimension l (X,Y, and Z):
Relabel all equivalent sites. Determine w∗

i [effective occupancies
of the relabeled sites, Eq. (6)].

Define the planes A, B, C, . . . ,X, A′.
Determine w∗

P [effective occupancies of planes, Eq. (7)].
Determine ŵi [in-plane occupancies, Eq. (8)].
Determine νPQ [hop rates between planes, Eq. (9)].
Consider the 1D representation. If boundary crossings occur, find

the lower complementary cell (with the lower terminal at X).
Distribute the hops between primary and complementary cells
following rules R1–R3 (Sec. II B 10).

(2) For every unit cell (primary/complementary):
Consider the system as a 1D path. If long hops with

hop-commensurate paths occur between two planes, the
effective hop rate between those planes is the sum of the rates
of the long hop and the hop-commensurate path.

Determine the effective hop rate for S distinct planes
[v∗

TT,l , Eq. (93)]; Eq. (90) can be used for S = 4, and Eqs. (91)
and (92) can be used for S = 2 and S = 3, respectively.
(For the complementary cell this directly gives v∗

XX,l .)
(2) End.
(1) End.

Figure 5(a):

Dθ≈0
T ,x = 	

	 + 	1(n − 1)

	1S

1 + (n − 1)S
(na)2,

Dθ≈0
T ,y = 	[	1(n − 1) + 	2]

	 + 	1(n − 1)
a2. (150)

Figure 5(b):

Dθ≈0
T ,x = (4̃ν11 + ν11)4a2

o,

Dθ≈0
T ,y = ν114a2

o . (151)

Figure 5(c):

Dθ≈0
T ,x = 9ν12ν21

2(ν12 + ν21)
a2

o,

Dθ≈0
T ,y = ν12ν22 + ν21ν11 + ν12ν21

2(ν12 + ν21)
a2

o . (152)

D. Algorithm (M-2)

The procedure presented in Secs. IV A and IV B can be sum-
marized as the algorithm reported in Table II. The procedure is
referred to as M-2 to differentiate it from the method described
in Sec. II G. In practice, both formulations (M-1 and M-2)
can be used to analyze the different contributions to the low
coverage diffusivity. Although M-1 can be automated easily, it
may require lengthy calculations to compute the determinants
B∗ and B∗

P,T� (or B∗
P,�T′). In comparison, M-2 provides a

more immediate route, at the cost of analyzing further how the
1D representation of the primary/complementary cell should
be split into sections so that the hop rates of the long hops

and their commensurate paths are summed together. Note,
however, that the two procedures are completely equivalent.

In addition to the effective hop rates derived for the systems
in Figs. 1–5, Table 3 in the Supplemental Material [14]
provides the final expressions obtained for the low coverage
tracer diffusivity for a triangular lattice with four types of
adsorption sites and asymmetric hops. Furthermore, we stress
that all the expressions listed in Tables PI–I, PI–III, and PI–IV
for systems with symmetric hops only (Part I [1]) have also
been derived using methods M-1 and M-2 in this report (Part
II). This confirms that the most general formula described in
the present report [Eq. (23)] is a suitable generalization of
Eq. (2).

V. VALIDATION

A. Comparison to simulations

Here we verify the validity of the proposed diffusivity
formulas against kinetic Monte Carlo simulations. The details
of the simulations are given in Sec. PI–III (Part I [1]). Table IV
in the Supplemental Material [14] provides a comparison
between the simulations and the theory for various systems
with asymmetric hops. Since the goal is to check the validity
of the analytical formulas, different hop rate values are used to
probe situations where the rates have similar values or differ
by several orders of magnitude. In fact, realistic hop rates
are used for the systems in Figs. 1(a)–1(c) and 2, where the
activation energies are taken from previous DFT studies, as
indicated in the corresponding figure captions. The relative
values of the removal rates are strongly modified by varying
the temperature. Near room temperature (300 K), only a few
hop types are active (the rest of the hops have very low rates
by orders of magnitude). On the contrary, at high temperatures
(such as 1500 K, as an example) all different hop rates become
rather similar. Overall, we stress that the analytical formulas
derived in both Part I and Part II of this study compare
extremely well with the simulations over diffusivity values
that span many orders of magnitude. This strongly indicates
that the proposed formalism is exact. Therefore, it can be
concluded that the proposed formalism is suitable for study of
the low coverage tracer diffusivity of typical diffusion species
in complex, periodic energy landscapes without any need to
perform the corresponding KMC simulations.

B. Comparison to previous studies

Previously, tracer diffusion has been studied using the
continuous-time random walk formalism [2,3]. While a
traditional random walk considers only a single hop type,
the CTRW method contemplates the possibility of different
hop rates for different hops. As in the present study, the
CTRW formalism considers the corresponding network of
jumps between all the different sites and solves the master
equation for the conditional probabilities of the hops in
the long-time limit. For this purpose, however, Fourier and
Laplace transformations are applied to the master equation
in the CTRW formalism and the resulting matrix equation
(in reciprocal space or k space) is diagonalized (eigenvalue
decomposition). The diffusivity is found by considering the
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longest-living mode, i.e., the eigenvalue that vanishes at k = 0
(hydrodynamic limit).

The CTRW method [2,3] has been used to study adatom
diffusion in various systems, including (A) a generic stepped
surface [13], (B) Ga diffusion on GaAs(001)-(β×4) [7], (C)
diffusion on GaAs(001)-c(4×4) [9], and (D) diffusion on
In2/3Ga1/3As(001)-(2×3) and In2/3Ga1/3As(001)-(1×3) [10].
As shown below, the formalism proposed in the present study
corrects some of the expressions obtained in those studies
and provides new formulas for several cases that could not be
solved by the CTRW approach.

Regarding system (A), which is shown in Fig. 5(a) in the
Supplemental Material [14], the expressions we obtain for
the Cartesian components of the diffusivity [Eq. (150)] are
the same as those reported by Natori and Godby [13].
However, the analytical derivation based on our formalism
(see Appendix 4(a) in the Supplemental Material [14]) is
significantly shorter than that in the original paper.

Regarding the diffusivity in system (B), Kley et al. [7] study
two hopping networks, here referred to as case 1 [no boundary
crossings; see Fig. 1(b)] and case 2 (with boundary crossings;
see Fig. 2). Using the names for the hop rates introduced in
the present study, the expressions that Kley et al. [7] provide
for the two components of the diffusivity for case 1 read

Dθ≈0
T ,x,(K) = 8ν12ν21

(
νh

22 + 2νd
22

)
(2ν12 + ν21)

(
ν21 + 2νh

22 + 4νd
22

)a2
o,

Dθ≈0
T ,y,(K) = 2

(
ν21ν11 + 4ν12ν

d
22

)
2ν12 + ν21

a2
o . (153)

Equation (153) is similar (but not identical) to our result
[Eq. (147)]. For Kley et al., ao in Eq. (153) is the lattice constant
of the conventional unit cell of the zincblende structure (5.65 Å
for GaAs). However, in the present study a in Eq. (147) is
the lattice constant of the surface unit cell along the [110]
direction [7.99 Å for GaAs(001)]. Since a = √

2ao, the two
expressions for the X component become identical. However,
the Y component of Kley et al. can only be reconciled with our
formula by taking νv

22 = νd
22. Although it is likely that these

two hops have the same activation barrier and, thus, their rates
are equal, our expression for the Y component is more general.

Now, regarding case 2, Kley et al. make the following
observation: “With the CTRW formalism we approximate the
diffusion constants (the rather long exact expression will be
published elsewhere [28]) as”

Dθ≈0
T ,x,(K) ≈ 8(ν12ν31 + ν13ν32)

2ν13
a2,

Dθ≈0
T ,y,(K) ≈ 2ν11ν31

ν13
a2. (154)

Unfortunately, we have not been able to find the exact
expression in subsequent publications by Kley et al. [Note that
Ref. [28] in the original article reads “[28] A. Kley (unpub-
lished)”]. According to our formalism, the exact expressions
for the diffusivity are shown in Eqs. (62) and (76) for the X and
Y components, respectively. This system features boundary
crossings in the Y dimension markedly and it is possible
that previous efforts have been unable to solve the problem
correctly. In comparison, the origin of the complex expression

for the Y component of the diffusivity is simple to understand
within our formalism. The fact that the diffusivity is the same
for different choices of the primary and complementary unit
cells strongly validates our approach. In addition, the excellent
comparison to the numerical simulations confirms the validity
of our method (see Sec. V A).

Regarding the diffusivity for system (C), also Penev et al.
[9] study two hopping networks, namely, case 3, for high
temperature without boundary crossings (see Fig. 5(b) in the
Supplemental Material [14]), and case 4, for low temperature
with boundary crossings [see Figs. 3(a)–3(d)]. For case 3,
the expressions we obtain for the Cartesian components of
the diffusivity [Eq. (151)] are the same as those reported
by Penev et al. [9]. In turn, for case 4, Penev et al. make
the following observation: “At sufficiently low temperatures,
however, one should include A2 in the 2D network of sites
and consider branching of the diffusion pathways towards
neighboring A1 or A2 sites. Although an analytic result
for Dαβ can still be derived in this case within the CTRW
formalism, the expressions are rather cumbersome and one
has to seek for simplifications requiring knowledge of all 	f i

rates.” In comparison, the exact expressions for the Cartesian
components of the diffusivity derived within our formalism
are reasonably simple, as shown in Eq. (144). As before, these
formulas remain unchanged when using different primary
and/or complementary unit cells, and their agreement with
the KMC simulations is excellent (see Sec. V A).

A related system was studied by Lepage et al. [6], who
considered the same substrate, GaAs(001)-c(4×4), with a
different adatom (Ga). The potential energy surface for Ga
is more corrugated, having deeper minima/higher barriers
and additional adsorption sites compared to the In adatom
considered by Penev et al. The network of hops for Ga is
presented in Fig. 1(a). Although Lepage et al. did not attempt to
obtain any analytical expression for the diffusivity, their KMC
simulations agree well with ours. In turn, our simulations show
excellent agreement with the analytical expressions derived
within our formalism [Eq. (146)].

Regarding the diffusivity for system (D) with (1×3)
reconstruction (case 6; see Fig. 5(c) in the Supplemental
Material [14]), the expressions we obtain for the Cartesian
components of the diffusivity [Eq. (152)] are the same as those
reported by Penev et al. [10]. When comparing their equations
to ours one should consider that they write 	f i where we use
νif . In turn, for system (D) with (2×3) reconstruction [case
5; see Figs. 3(e)–3(h)], we obtain the same formula for the X

component of the diffusivity. Using the terms for the hop rates
introduced in the present study, the expression that Penev et al.
[10] give for the Y component of the diffusivity is

Dθ≈0
T ,y = ν21

[
ν12ν

2
31 + (2ν12 + ν13)ν33ν31 + 3ν13ν

2
33

]
B(2ν33 + ν31)

a2
o .

(155)

Equation (155) is similar (but not identical) to our result
[Eq. (145)]. They differ in the factor 3 that multiplies the
term ν13ν

2
33 in Penev et al.’s expression. The correct value

of this factor is 1, as in Eq. (145). This is supported by the
fact that we can derive Eq. (145) using different unit cells, all
giving the same result. In addition, poor agreement with the
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kinetic Monte Carlo simulations is obtained if the value 3 is
used instead of 1.

In summary, the proposed method in the present study
agrees well with previous analytical results obtained using the
CTRW method, correcting some of them and even providing
new formulas for difficult cases that could not be solved before.
In general, the expressions obtained using the CTRW method
are approximate in the sense that only the leading terms of
an expansion are kept. This may explain why some CTRW
results differ from the exact expressions derived here using the
proposed new method.

C. Independent and coupled diffusion channels

A major difference with respect to the CTRW method is
the direct use of real space in the formalism proposed in
the present study. This makes possible the identification of
different diffusion channels in complex systems. For instance,
although we can only distinguish one diffusion channel in the
1D representation shown in Fig. 2(f) for propagation along
X, the 1D representations shown in Figs. 2(l) and 2(m) for
propagation along Y suggest the existence of two independent
channels (ACA′, DBD′) that are coupled through a third one
(ABCDA′). We may close any of the three channels (or even
two of them) and the adparticle will still be propagated. Since
every channel is composed of sections, we may close one or
several sections without completely canceling the diffusivity.
In order to neutralize the diffusivity completely we need
to close the three channels. Other examples are shown in
Figs. 3(b) and 3(c), where three independent diffusion channels
are observed, namely, ADA′, ACDEA′, and FABDF′, and in
Figs. 3(f) and 3(g), with two independent channels (ACA′ and
DABD′). From this perspective, the complex system reported
in Table III(c) (see the Supplemental Material [14]) has a
total of five independent diffusion channels, leading to the five
diffusivity terms wf 3νff , wf νf t , wh3νhh, whνht , and wb

3 νo.
The real-space analysis performed in this study concludes

that complex tracer diffusion in periodic energy landscapes in
any number of dimensions can be reduced to a 1D problem of
hopping between planes. The previous examples show that the
number and structure of the different diffusion channels are
revealed once the 1D picture of the system is constructed. This
requires observing rules R1–R3 (Sec. II B 10), if boundary
crossings occur. In comparison, the CTRW method does not
provide direct access to the structure of the diffusion channels,
and depending on the complexity of the system, it may only
provide an approximation of the actual tracer diffusivity.

VI. CONCLUSIONS

This study completes a series of two papers focusing on
the presentation of a general expression for calculation of the
single-particle diffusion coefficient in any number of dimen-
sions for systems with complex, periodic energy landscapes,
where the end sites of the hops can be located symmetrically
(Part I) and/or asymmetrically (Part II) with respect to the hop
origins. To use these expressions, the only necessary input are
the values of the hop rates, which can be determined from the
corresponding diffusion barriers by experiments and/or calcu-

lations based on DFT. This provides a useful alternative to the
traditional, labor-intensive procedure where numerous kinetic
Monte Carlo simulations must be performed after knowledge
of the diffusion barriers. Furthermore, the proposed formalism
is an alternative to the traditional continuous-time random walk
formalism. Compared to the analysis of diffusion performed
in reciprocal space by the CTRW formalism, the proposed
method is more intuitive, directly using the information on the
hop rates in real space. Furthermore, for very complex systems
the proposed, exact formalism enables the identification of the
underlying (independent and/or coupled) diffusion channels.

The present report (Part II) describes the low coverage
diffusivity (Dθ≈0

T ) as the mean of the Cartesian components
(Dθ≈0

T ,x , Dθ≈0
T ,y , . . .): Dθ≈0

T = 1
α
�α

l=1D
θ≈0
T ,xl

, where α is the
number of dimensions and x1 = x, x2 = y, x3 = z designate
the actual dimensions [Eq. (18)]. In turn, the Cartesian
component for dimension l (=1, . . . ,α) is described as
a weighted sum of the partial diffusivities for the cell-
commensurate sites (i ∈ C), terminal sites (i ∈ T ), and crosser
sites (i ∈ X ): Dθ≈0

T ,xl
= �i∈C∪T ∪Xw∗

i ν
∗
ii,la

2
l = �i∈Cwiνii,la

2
l +

�i∈T w∗
i ν

∗
ii,la

2
l + �i∈Xw∗

i ν
∗
ii,la

2
l [Eq. (21)]. Here, al is the

lattice parameter (along dimension l) for the chosen or-
thorhombic unit cell and the occupancies, wi , are determined
from the rateplicities [Eq. (3)]: wi = μji

μij
/�k

μjk

μkj
, where the

rateplicity μij is the product of the hop rate from site i to site
j , νij , and the number of equivalent hops from i to j , i.e.,
the multiplicity, mij . [The effective occupancies, w∗

i = wi/ni ,
are directly obtained by dividing the occupancies by the
number of times that site i appears in the orthorhombic unit
cell, ni]. Since the hop rates for the cell-commensurate hops
are known, the diffusivity can be calculated once the effective
hop rates for the terminal and crosser sites, ν∗

ii,l , have been
determined, for which purpose the present study (Part II)
provides two complementary methods (M-1, in Sec. II G, and
M-2, in Sec. IV D).

Based on the use of Eqs. (39) and (40), method M-1
can be automated easily, but it requires longer calculations.
In comparison, M-2 is based on the 1D formulas sum-
marized in Eqs. (90)–(92), which provide a more direct
approach to determining the effective hop rates. However,
this requires analyzing how the 1D representation of the
primary/complementary cell should be split into sections so
that the hop rates of the long hops and their commensurate
paths are summed together.

The central result of the proposed formalism [Eq. (23)] is
used to derive numerous formulas for a variety of systems,
which are then validated against KMC simulations and previ-
ous analytical expressions based on the CTRW formalism. The
proposed method corrects some of the formulas obtained by the
CTRW method and provides new expressions for previously
unsolved cases, thus demonstrating the ability of the proposed
formalism to describe diffusion.

The proposed formalism may have implications for the
description of transport in other areas based on hopping
theories that are solved in reciprocal space. A description in
real space might be possible for such systems by defining the
corresponding site occupancies and effective occupancies for
the various planes, thus assigning hopping rates to the planes,
as illustrated in this study.
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