High Chern number van der Waals magnetic topological multilayers MnBi2_2Te4_4/hBN

Abstract

Chern insulators are two-dimensional magnetic topological materials that conduct electricity along their edges via the one-dimensional chiral modes. The number of these modes is a topological invariant called the first Chern number CC, that defines the quantized Hall conductance as Sxy=Ce2/hS_{xy}= C e^2/h. Increasing CC is pivotal for the realization of low-power-consumption topological electronics, but there has been no clear-cut solution of this problem so far, with the majority of existing Chern insulators showing C=1C=1. Here, by using state-of-the-art theoretical methods, we propose an efficient approach for the realization of the high-CC Chern insulator state in MnBi2_2Te4_4/hBN van der Waals multilayer heterostructures. We show that a stack of nn MnBi2_2Te4_4 films with C=1C=1 intercalated by hBN monolayers gives rise to a high Chern number state with C=nC=n, characterized by nn chiral edge modes. This state can be achieved both under the external magnetic field and without it, both cases leading to the quantized Hall conductance Sxy=Ce2/hS_{xy}= C e^2/h. Our results therefore pave way to practical high-CC quantized Hall systems.Comment: 10 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions