85 research outputs found

    In vivo MRI based prostate cancer localization with random forests and auto-context model

    Get PDF
    Prostate cancer is one of the major causes of cancer death for men. Magnetic resonance (MR) imaging is being increasingly used as an important modality to localize prostate cancer. Therefore, localizing prostate cancer in MRI with automated detection methods has become an active area of research. Many methods have been proposed for this task. However, most of previous methods focused on identifying cancer only in the peripheral zone (PZ), or classifying suspicious cancer ROIs into benign tissue and cancer tissue. Few works have been done on developing a fully automatic method for cancer localization in the entire prostate region, including central gland (CG) and transition zone (TZ). In this paper, we propose a novel learning-based multi-source integration framework to directly localize prostate cancer regions from in vivo MRI. We employ random forests to effectively integrate features from multi-source images together for cancer localization. Here, multi-source images include initially the multi-parametric MRIs (i.e., T2, DWI, and dADC) and later also the iteratively-estimated and refined tissue probability map of prostate cancer. Experimental results on 26 real patient data show that our method can accurately localize cancerous sections. The higher section-based evaluation (SBE), combined with the ROC analysis result of individual patients, shows that the proposed method is promising for in vivo MRI based prostate cancer localization, which can be used for guiding prostate biopsy, targeting the tumor in focal therapy planning, triage and follow-up of patients with active surveillance, as well as the decision making in treatment selection. The common ROC analysis with the AUC value of 0.832 and also the ROI-based ROC analysis with the AUC value of 0.883 both illustrate the effectiveness of our proposed method

    MRI-based prostate cancer detection with high-level representation and hierarchical classification

    Get PDF
    Extracting the high-level feature representation by using deep neural networks for detection of prostate cancer, and then based on high-level feature representation constructing hierarchical classification to refine the detection results

    Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    Get PDF
    Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation

    Magnetic resonance imaging of benign prostatic hyperplasia

    Get PDF
    Benign prostatic hyperplasia (BPH) is a common condition in middle-aged and older men and negatively affects the quality of life. An ultrasound classification for BPH based on a previous pathologic classification was reported, and the types of BPH were classified according to different enlargement locations in the prostate. Afterwards, this classification was demonstrated using magnetic resonance imaging (MRI). The classification of BPH is important, as patients with different types of BPH can have different symptoms and treatment options. BPH types on MRI are as follows: type 0, an equal to or less than 25 cm3 prostate showing little or no zonal enlargements; type 1, bilateral transition zone (TZ) enlargement; type 2, retrourethral enlargement; type 3, bilateral TZ and retrourethral enlargement; type 4, pedunculated enlargement; type 5, pedunculated with bilateral TZ and/or retrourethral enlargement; type 6, subtrigonal or ectopic enlargement; type 7, other combinations of enlargements. We retrospectively evaluated MRI images of BPH patients who were histologically diagnosed and presented the different types of BPH on MRI. MRI, with its advantage of multiplanar imaging and superior soft tissue contrast resolution, can be used in BPH patients for differentiation of BPH from prostate cancer, estimation of zonal and entire prostatic volumes, determination of the stromal/glandular ratio, detection of the enlargement locations, and classification of BPH types which may be potentially helpful in choosing the optimal treatment

    Prostate Volumes Derived From MRI and Volume-Adjusted Serum Prostate-Specific Antigen: Correlation With Gleason Score of Prostate Cancer

    Get PDF
    The purpose of this article is to study relationships between MRI-based prostate volume and volume-adjusted serum prostate-specific antigen (PSA) concentration estimates and prostate cancer Gleason score

    Magnetic Resonance Imaging-Guided Transurethral Ultrasound Ablation of Prostate Cancer

    Get PDF
    Purpose: Magnetic resonance imaging-guided transurethral ultrasound ablation uses directional thermal ultrasound under magnetic resonance imaging thermometry feedback control for prostatic ablation. We report 12-month outcomes from a prospective multicenter trial (TACT). Materials and methods: A total of 115 men with favorable to intermediate risk prostate cancer across 13 centers were treated with whole gland ablation sparing the urethra and apical sphincter. The co-primary 12-month endpoints were safety and efficacy. Results: In all, 72 (63%) had grade group 2 and 77 (67%) had NCCN® intermediate risk disease. Median treatment delivery time was 51 minutes with 98% (IQR 95-99) thermal coverage of target volume and spatial ablation precision of ±1.4 mm on magnetic resonance imaging thermometry. Grade 3 adverse events occurred in 9 (8%) men. The primary endpoint (U.S. Food and Drug Administration mandated) of prostate specific antigen reduction ≥75% was achieved in 110 of 115 (96%) with median prostate specific antigen reduction of 95% and nadir of 0.34 ng/ml. Median prostate volume decreased from 37 to 3 cc. Among 68 men with pretreatment grade group 2 disease, 52 (79%) were free of grade group 2 disease on 12-month biopsy. Of 111 men with 12-month biopsy data, 72 (65%) had no evidence of cancer. Erections (International Index of Erectile Function question 2 score 2 or greater) were maintained/regained in 69 of 92 (75%). Multivariate predictors of persistent grade group 2 at 12 months included intraprostatic calcifications at screening, suboptimal magnetic resonance imaging thermal coverage of target volume and a PI-RADS™ 3 or greater lesion at 12-month magnetic resonance imaging (p <0.05). Conclusions: The TACT study of magnetic resonance imaging-guided transurethral ultrasound whole gland ablation in men with localized prostate cancer demonstrated effective tissue ablation and prostate specific antigen reduction with low rates of toxicity and residual disease

    Can computer-aided diagnosis assist in the identification of prostate cancer on prostate MRI? a multi-center, multi-reader investigation.

    Get PDF
    For prostate cancer detection on prostate multiparametric MRI (mpMRI), the Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) and computer-aided diagnosis (CAD) systems aim to widely improve standardization across radiologists and centers. Our goal was to evaluate CAD assistance in prostate cancer detection compared with conventional mpMRI interpretation in a diverse dataset acquired from five institutions tested by nine readers of varying experience levels, in total representing 14 globally spread institutions. Index lesion sensitivities of mpMRI-alone were 79% (whole prostate (WP)), 84% (peripheral zone (PZ)), 71% (transition zone (TZ)), similar to CAD at 76% (WP, p=0.39), 77% (PZ, p=0.07), 79% (TZ, p=0.15). Greatest CAD benefit was in TZ for moderately-experienced readers at PI-RADSv2 <3 (84% vs mpMRI-alone 67%, p=0.055). Detection agreement was unchanged but CAD-assisted read times improved (4.6 vs 3.4 minutes, p<0.001). At PI-RADSv2 ≥ 3, CAD improved patient-level specificity (72%) compared to mpMRI-alone (45%, p<0.001). PI-RADSv2 and CAD-assisted mpMRI interpretations have similar sensitivities across multiple sites and readers while CAD has potential to improve specificity and moderately-experienced radiologists' detection of more difficult tumors in the center of the gland. The multi-institutional evidence provided is essential to future prostate MRI and CAD development

    Optimum imaging strategies for advanced prostate cancer: ASCO guideline

    Get PDF
    PURPOSE Provide evidence- and expert-based recommendations for optimal use of imaging in advanced prostate cancer. Due to increases in research and utilization of novel imaging for advanced prostate cancer, this guideline is intended to outline techniques available and provide recommendations on appropriate use of imaging for specified patient subgroups. METHODS An Expert Panel was convened with members from ASCO and the Society of Abdominal Radiology, American College of Radiology, Society of Nuclear Medicine and Molecular Imaging, American Urological Association, American Society for Radiation Oncology, and Society of Urologic Oncology to conduct a systematic review of the literature and develop an evidence-based guideline on the optimal use of imaging for advanced prostate cancer. Representative index cases of various prostate cancer disease states are presented, including suspected high-risk disease, newly diagnosed treatment-naĂŻve metastatic disease, suspected recurrent disease after local treatment, and progressive disease while undergoing systemic treatment. A systematic review of the literature from 2013 to August 2018 identified fully published English-language systematic reviews with or without meta-analyses, reports of rigorously conducted phase III randomized controlled trials that compared $ 2 imaging modalities, and noncomparative studies that reported on the efficacy of a single imaging modality. RESULTS A total of 35 studies met inclusion criteria and form the evidence base, including 17 systematic reviews with or without meta-analysis and 18 primary research articles. RECOMMENDATIONS One or more of these imaging modalities should be used for patients with advanced prostate cancer: conventional imaging (defined as computed tomography [CT], bone scan, and/or prostate magnetic resonance imaging [MRI]) and/or next-generation imaging (NGI), positron emission tomography [PET], PET/CT, PET/MRI, or whole-body MRI) according to the clinical scenario
    • …
    corecore