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Abstract

Purpose—Extracting the high-level feature representation by using deep neural networks for 

detection of prostate cancer, and then based on high-level feature representation constructing 

hierarchical classification to refine the detection results.

Methods—High-level feature representation is first learned by a deep learning network, where 

multi-parametric MR images are used as the input data. Then, based on the learned high-level 

features, a hierarchical classification method is developed, where multiple random forest 

classifiers are iteratively constructed to refine the detection results of prostate cancer.

Results—The experiments were carried on 21 real patient subjects, and the proposed method 

achieves an averaged section-based evaluation (SBE) of 89.90%, an averaged sensitivity of 

91.51%, and an averaged specificity of 88.47%.

Conclusions—The high-level features learned from our proposed method can achieve better 

performance than the conventional handcrafted features (e.g., LBP and Haar-like features) in 
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detecting prostate cancer regions, also the context features obtained from the proposed hierarchical 

classification approach are effective in refining cancer detection result.
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deep learning; hierarchical classification; magnetic resonance imaging (MRI); prostate cancer 
detection; random forest

1. INTRODUCTION

Prostate cancer is one of the major cancers among men in the United States.1 It is reported 

that about 28% of cancers in men occur in the prostate, and approximately 16% of men will 

be diagnosed with prostate cancer in their lifetime.1 Thus, it is of vital importance to 

accurately identify prostate cancer as early as possible, which can effectively help reduce the 

possibility of mortality and improve treatment. Currently, the mainstream clinical method 

for identification of prostate cancer is random systematic (sextant) biopsies under the 

guidance of transrectal ultrasound (TRUS) when a patient is diagnosed as a suspicious 

prostate cancer sufferer with a high prostate-specific antigen (PSA) level or an abnormal 

screening digital rectal examination (DRE). In practice, a doctor first divides the prostate 

into several sections according to the number of biopsy points, and then extracts tissue 

sample from each section by shooting a needle in each section for further detection. Since 

TRUS-guided biopsy for prostate cancer detection (PCD) has high false-negative results 

(i.e., it is easy to mis-diagnose a prostate cancer patient as a normal subject), biopsy is 

usually needed to repeat 5–7 times to increase the detection accuracy. However, as an 

invasive operation, TRUS-guided biopsy is not suitable for screening a large patient 

population in prostate cancer detection.2 It is reported that Magnetic resonance imaging 

(MRI) is a powerful, noninvasive imaging tool able to help accurately detect or diagnose 

many kinds of diseases, such as prostate cancer3–8 and Alzheimer’s Disease,9,10 by 

providing anatomical, functional and metabolic MRI information. In the literature, recent 

studies have shown that multiparametric MR images, e.g., T2-weighted imaging (T2-

weighted), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) 

MR images, are very beneficial in targeting biopsies toward suspicious cancer regions and 

can help select subjects who should undergo anterior biopsy, and can lead to higher 

detection accuracy.2 Unfortunately, MRI-based analysis for PCD not only requires a high 

level of expertise from radiologists, but also is quite time-consuming due to the large 

number of 3D images. In addition, there exists significant observer variability from 

physicians in interpreting the volume and stage of tumor in the prostate MR images.

On the other hand, computer-aided detection (CAD) system for PCD can potentially detect 

suspicious lesions in prostate MR images automatically, which helps reduce the variability 

among observers and speed up the reading time. Thus, CAD system for prostate cancer 

detection becomes an active research topic in the literature. Generally, there are five main 

stages in a typical CAD system for PCD, i.e., (a) image preprocessing, (b) segmentation, (c) 

registration, (d) feature extraction, and (e) classification. Specifically, image preprocessing is 

to normalize/transform raw images to a domain where cancer regions can be easily detected. 

Segmentation is to segment the prostate region from the whole MR image for subsequent 
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analysis. Registration is to transform different sets of images onto one coordinate system. 

Feature extraction is to extract distinctive features from targets of interest in the whole 

prostate region. And classification is to identify whether an unknown region/voxel within 

prostate region belongs to cancer region or not, based on extracted features. In this study, we 

focus on both feature extraction and classification stages.

In the last decade, researchers have proposed many CAD systems for prostate cancer 

detection using different types of features extracted from multiparametric MR images and 

different classification methods. For example, Chan et al.11 were the first to apply MR 

images for PCD, where two types of second-order features (i.e., texture features extracted 

from lesion candidate, and anatomical features described by cylindrical coordinate) and 

support vector machine (SVM) classifier were employed to identify prostate cancer in the 

peripheral zone (PZ). Niaf et al.12 proposed a supervised machine-learning method to 

separate cancer regions of interest (ROIs) from benign ROIs within the PZ. In their method, 

the suspicious cancer ROIs are manually annotated by both histopathologist and researcher, 

and then suspicious ROIs are classified into benign and cancer tissues by using textual 

information and gradient features extracted from T2-weighted, DWI and dynamic contrast-

enhanced (DCE) MR images. Litjens et al.13 proposed an automatic CAD system by using 

intensity, texture, shape anatomy and pharmacokinetic features extracted from MR images. 

To be specific, they first developed an initial-candidate detection approach to generate a 

sufficient number of suspicious ROIs for screening, and then used a classification-based 

method to identify and segment cancer ROIs. Langer et al.14 developed a multiparametric 

model suitable for prospectively identifying prostate cancer in the PZ, where fractal and 

multifractal features were combined together as representation and nonlinear supervised 

classification algorithms were employed to perform PCD. Kwak et al.15 proposed a CAD 

system by using T2-weighted, high-b-value DWI, and texture features based on local binary 

patterns. In this method, a three-stage feature selection method was employed to provide the 

most discriminative features.

The main disadvantage of existing PCD methods is that they mainly focus on identifying 

prostate cancer in the peripheral zone (PZ), instead of the entire prostate region.11,12,14 

Although a few PCD methods13,16 can detect cancer regions from the whole prostate, they 

usually need to generate a sufficient number of suspicious ROIs provided by a 

histopathologist via manually contouring, which is not only labor-intensive and time-

consuming, but also subject to manual errors. To address this issue, Qian et al.17 proposed an 

automatic PCD method by using random forests and auto-context model. Specifically, they 

regarded each voxel in prostate regions as a ROI, and directly detected the location of 

prostate cancer from the whole prostate region by employing the random forests and auto-

context model, where random Haar-like features were used for both appearance features and 

context features. To the best of our knowledge, it is the only work to directly identify cancer 

regions from the whole prostate without using any manual or automatic method to segment 

candidate cancer ROIs. Similar to many existing PCD methods, the method proposed by 

Qian et al.17 only employed the low-level features or handcrafted features extracted from 

MR images. In this study, we assume that there exist hidden or latent high-level features in 

the original features that can help build more robust PCD models. Thus, the problem is now 

becoming how to extract such high-level features from the datasets at hand.
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In recent years, deep learning neural network has been demonstrated to be effective in 

uncovering high-level nonlinear structure in data and picking out which features are useful 

for learning.18 The main promise of deep learning is replacing handcrafted features with 

multiple levels of representations of data in an unsupervised manner. Here, each 

representation, corresponding to a level of abstraction, forms a hierarchy of concepts. Recent 

studies have shown that deep learning provides promising results in computer vision,19 

speech20 and other fields,18,21 while some studies have shown deep learning-based methods 

gain much better performance than method using handcraft or low-level features. For 

example, in,22 Guo et al. learned a latent feature representation of infant MR brain images 

and obtained at least 5% higher performance than the method using handcraft features 

including Haar, HoG, and gradients; in,18 Suk et al. proposed a deep learning-based latent 

features representation for diagnosis of Alzheimer’s disease and achieved more accurate 

performance than that based on low-level features.

Inspired by these significant developments, we exploit deep neural networks in this study to 

extract high-level features for prostate cancer detection. We first propose a novel high-level 

feature representation for the detection of prostate cancer by using deep learning network. 

Specifically, we use Stacked Auto-Encode (SAE) model to learn latent high-level feature 

representation from each type of multiparametric MR images, and then employ such high-

level features for subsequent classification or detection. The reason we adopt SAE model 

here is that it contains an unsupervised pretraining process, and such process allows us to 

benefit from the target-unrelated samples to discover general latent feature representations. 

However, in this work, the detection of prostate cancer is a voxel-wise classification task 

where each voxel is classified independently, so the classification result may be not 

satisfying due to inconsistent classification in the spatial neighborhood due to classification 

error. To improve the robustness of the learning system, we further propose a hierarchical 

classification method to refine the detection results, motivated by the auto-context model.23 

That is, we combine the context features obtained from the estimated cancer probability map 

in the previous layer with the learned high-level features together to construct a new random 

forest classifier in the next layer. By using such hierarchical learning structure, we can 

obtain a refined probability map that can be regarded as the result of cancer detection. To 

demonstrate the effectiveness of our proposed method, we conduct several groups of 

experiments on 21 real patient subjects. The experimental results demonstrate that (a) the 

context features obtained from our proposed hierarchical classification approach are 

effective in refining the detection result; (b) our proposed method achieves an averaged 

section-based evaluation (SBE) of 89.90%, an averaged sensitivity of 91.51%, and an 

averaged specificity of 88.47%. In addition, since combining the high-level features with the 

original low-level features usually helps build a robust model for disease diagnosis,18,24 we 

further try to augment features by a concatenation of the high-level latent features and the 

original intensity features for constructing hierarchical classifiers. The experimental results 

show that the original low-level features are still informative for detection of prostate cancer 

along with the high-level features.

The remainder of this study is organized as follows. We first give a detailed description 

about our proposed method in Section 2. Then, we elaborate the experimental design, results 
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and analysis in Section 3. In Section 4, we discuss the limitations and disadvantages of our 

method. Finally, a conclusion is drawn in Section 5.

2. METHOD

Our method consists of two main steps, where the first step is to learn latent high-level 

feature representation from multiparametric MR images, and the other step is to construct 

hierarchical classification to alleviate the problem of spatially inconsistent classification. In 

this section, we will elaborate our proposed method for detection of prostate cancer using 

multiparametric MRI.

2.A. High-level feature representation learning

Extracting informative features from the target of interest plays a key role in a successful 

CAD system.21,25,26 Currently, many kinds of feature representation methods have been 

developed for computer-aided prostate cancer detection, where typical features for prostate 

MR images include volume, shape, texture, intensity, and various statistics.12,13,17,27,28 For 

example, Niaf et al.12 used some image features including gray-level features, gradient 

features, and texture features, and also some functional features including semi-quantitative 

and quantitative features. Litjens et al.13 used intensity, texture, shape, anatomy, and 

pharmacokinetic features. Tiwari et al.27 proposed a multimodal wavelet embedding 

representation to extract features. Liu et al.28 proposed a new feature representation called 

the location map by applying a nonlinear transformation to the spatial position coordinates 

of each pixel in MR images. Qian et al.17 used Haar-like features for constructing 

appearance features and context features. These methods use only low-level features or 

handcrafted features for the subsequent prostate cancer detection task. In this work, we focus 

on mining the latent high-level feature representation conveyed in data. Recent studies have 

shown that deep learning-based methods provide an effective way to obtain latent high-level 

features, among which stacked auto-encoder (SAE) is a popular unsupervised deep learning 

network. In this study, we adopt SAE to learn a latent high-level feature representation for 

multiparametric MR images. In the following, we will first briefly introduce the SAE model, 

and then describe our proposed learning method for high-level feature representation via 

SAE.

In a SAE model, several single auto-encoder (AE) neural networks are stacked in a 

hierarchical manner.29 Specifically, the output of an AE in a specific layer is treated as the 

input of the AE in the next layer. For simplicity, we first introduce the construction of a 

single AE network, and then describe the whole SAE network. In general, an AE neural 

network is comprised of an encoder and a decoder with a hidden layer. The encoder attempts 

to seek for a sparse nonlinear mapping W to project the high-dimensional input data x into a 

low-dimensional hidden layer representation h through a deterministic mapping, i.e., h = 

s(Wx + b), where s is the sigmoid activation function. The decoder tries to decode the low-

dimensional hidden layer representation h to a vector x′, which approximately reconstructs 

the input vector x by another deterministic mapping W̃, i.e., x′ = s(W̃h + b′) ≈ x. Here, W 
and W̃ are the weight/mapping matrixes for the encoder and the decoder, respectively; b and 

Zhu et al. Page 5

Med Phys. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b′ are the bias vectors. In practice, we usually set W̃ = WT (where T denotes transposition), 

and set both b and b′ to the vector with all elements of one.

In the training stage, an AE network is first trained using the low-level intensity features 

obtained from the training images. Afterward, the output from the hidden units of this AE is 

used as the input of the second layer. Similarly, successive AE networks can be trained in a 

hierarchical manner. After learning the initial weight matrixes of the whole SAE, we need to 

further fine-tune the entire deep network for finding the optimal weight matrixes (please 

see29 for details). After training the SAE network, we can obtain a high-level feature 

representation for a given low-level feature vector. Denote the mapping matrices of the 

trained L-layer SAE as W1, W2, …, Wl,…, WL, respectively, and the low-level feature 

vector as x. We can successively obtain a new feature representation in the l-th layer by 

using the output of the previous layer through xl = s(Wlxl−1 + 1⃑)l = 1, 2, …, L, where x0 = x, 

and 1⃑ denotes the vector with all elements of one.

Now, we introduce our proposed high-level feature learning method via SAE, with the 

detailed process shown in Fig. 1. In our work, we regard the detection of prostate cancer as a 

voxel-wise classification task where each voxel is treated as a training sample. In this way, 

our deep learning architecture is learned based on these training samples (i.e., voxels), 

instead of the entire images. For each type of multiparametric MRI data, we first obtain low-

level intensity features of each training sample (or voxel) from its 3D 9 × 9 × 3 patch 

centered at this voxel, and then treat the intensity low-level features of all training samples 

as (after reshaping each of them into a column vector) the training data to learn a 

corresponding SAE model. Note that we use a 3D patch size of 9 × 9 × 3, because we have 

large slice thickness in the z dimension. In Fig. 1, P is a given point in the multiparametric 

MRI of the same subject, and xT2, xDWI, and xdADC are the corresponding intensity features 

in the T2-weightd MRI, DWI and ADC, respectively. Given a certain type of MRI, e.g., xT2, 

we can obtain the learned high-level feature vector yT2 using the SAET2 model. Thus, given 

three types of MRI data, we can learn three high-level feature vectors, i.e., yT2, yDWI, and 

ydADC. Finally, we concatenate these learned high-level features together i.e., ySAE = [yT2; 

yDWI; ydADC], to represent the point P.

2.B. Hierarchical classification

After obtaining the latent high-level feature representation via SAE, we can construct a 

classifier for the detection of prostate cancer. Many classifiers, such as Support Vector 

Machine (SVM),30 AdaBoost31 and random forests, can be used for detection of prostate 

cancer. In this work, we resort to the random forest as classifier, which allows us to explore a 

large number of image features. However, the detection of prostate cancer is a voxel-based 

classification task where each voxel is classified independently, so there may be inconsistent 

classification results in the spatial neighborhood due to classification error (as shown in the 

first column of Fig. 7). Recently, Tu and Bai proposed an effective auto-context model23 to 

capture and use context features to refine the classification results in an iterative way. 

Specifically, given a set of appearance features of training images and their corresponding 

label maps, the first classifier f1 can be trained based purely on the appearance features and 

the corresponding classification results are obtained by using f1. Afterward, the context 
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features are extracted from the classification results, and then can be combined with the 

original appearance features to train the second classifier f2. The algorithm then iterates to 

approach the ground truth until convergence. In the testing stage, the algorithm follows the 

same procedure by applying a sequence of trained classifiers to compute classification 

results.

Inspired by the idea of the auto-context model, we design a hierarchical classification 

approach by iteratively constructing multiple random forest classifiers to alleviate the 

problem of spatially inconsistent classification for prostate cancer detection. In the 

following, we first briefly describe how to train a random forest classifier and how to 

determine a class label for a given testing sample by using random forests classifier, based 

on the learned high-level feature representation.

Random forests classifier is an ensemble learning classification method proposed by 

Breiman et al.32 It consists of multiple decision trees constructed by random perturbing 

training samples and features subset. Let Ftr = {S1, S2, …, SN} denote the learned high-level 

feature set of all training voxels for multiparametric MR images, where N is the number of 

slices, Si = {Si,1, Si,2, …Si,ni} is the feature set belonging to the i -th slice, and ni is the 

number of training voxels of the i -th slice. When constructing a decision tree, we first select 

a bootstrap set from the entire training samples Si = {Si,1, Si,2, …Si,ni}(i = 1, …N), and put 

it at the root node, and then learn a split function33 to split the root node into left child node 

and right child node. This splitting process is repeated on each derived subset in a recursive 

manner until it reaches the constraint conditions. For example, it reaches a specified depth 

(d), or the criterion that no tree leaf node should contain less than a certain number of 

training samples. After a decision tree is built, we can obtain the posterior probabilities 

belong to each class for each leaf node. In the testing stage, each test sample is classified 

independently by each decision tree. Specifically, starting from the root node of each 

decision tree, the testing sample is passed down to each node with the corresponding split 

function on it until reaching a leaf node. When reaching a leaf node, the maximum posterior 

probability of the leaf node is used to determine the classification result of the testing 

sample. Since there are multiple decision trees in the whole random forest, there are multiple 

classification results for the testing sample. Finally, we use the majority voting to combine 

these classification results to classify the testing sample.

In the following, we will describe our proposed hierarchical classification in detail as shown 

in Fig. 2. In training stage, we first train a random forest classifier f1 only using the training 

set Ftr, through which one can obtain the probability of each training voxel and further 

obtain the classification probability map set M1 = {M1,1, M1,2, …M1,N}, where M1,i(i = 1, 

…, N) denotes the first probability map of the i-th slice. Letting P1,map be any pixel in the 

probability map M1,i, P be the corresponding voxel in the original MR image, and ySAE be 

the appearance feature representation (i.e., learned high-level feature representation) of P, 

we can extract the context feature y1,map from the probability map M1,i by selecting a patch 

size of 9 × 9 centered at P1,map (after reshaping each patch into a column vector). It is worth 

noting that we extract context features from 2D patch instead of 3D patch, since initial 

context features are extracted from the manual ROIs in the training stage while cancer 

regions in only 1 to 3 slices were manually delineated for each MRI that consists of 22 to 45 
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slices. Next, we concatenate the context features y1,map with the original high-level features 

ySAE together for training the second random forest classifier f2. Such process is repeated t 
times, where a set of classifiers are constructed in a hierarchical manner.

Similarly, in the testing stage, given a test subject with multiparameter MRI data, we first 

learn its high-level feature representation, and then obtain the first probability map by 

classifying the subject using the first trained classifier f1 using only its high-level 

representation, and then feed the combination of the context features extracted from the 

probability map and the learned high-level representation into the next trained classifier for 

refinement. By repeating these steps, we can get much clearer probability map.

3. EXPERIMENTS

3.A. Dataset and image preprocessing

The dataset used in this study consists of multiparametric MR images from 21 prostate 

cancer patients, including T2-weighted MRI, DWI, and dADC (a type of ADC). Some 

samples are shown in Fig. 3. All T2-weighted MRI and DWI were acquired (after biopsy) 

between March 2008 and March 2010 with an endorectal coil (Medrad; Bayer Healthcare, 

Warrendale, PA, USA) and a phased-array surface coil with a Philips MR scanner (Achieva; 

Philips Healthcare, Eindhoven, the Netherlands, a 3T imager), and dADC was calculated 

from DWI by adjusting the b-value. Immediately before MR imaging, 1 mg of glucagon 

(Glucagon; Lilly, Indianapolis, Ind) was injected intramuscularly to decrease peristalsis of 

the rectum. The data acquisition parameters are shown in Table I. It is worth noting that 

dADC was calculated from DWI and dADC shares the same parameters with DWI, so there 

are no additional parameters for dADC in this table.

For each subject, 1–3 cancer manual delineations on MR images were done jointly by both a 

radiologist (with 9 yr of experience in prostate MR imaging) and a pathologist (with 8 yr of 

experience in genitourinary pathology). These cancer ROIs, totally 37 tumors, including 26 

PZ tumors, 11 CG or TZ tumors, were mostly outlined on T2-weighted images, and some 

were outlined on DWI. In our experiments, all images are resized into 512 × 512 with the 

resolution 0.3125 × 0.3125 × 3 (mm3) and all DWI and dADC images are aligned to T2-

weighted image by using the FLIRT tool.34 Note that, since the contrast of the prostate and 

other tissues in DWI and dADC is not high enough while the boundary of bladder is 

obvious, we first align T2-weighted image to DWI along with the bladder masks, and then 

align DWI to T2-weighted image with the prostate masks. At the same time, histogram 

matching35 is also performed on each type of MRI across different subjects.

3.B. Experimental settings

In the experiments, we use a leave-one-subject-out strategy. That is, each time we treat one 

subject as the testing data, while the remaining 20 subjects are used as the training data. 

Here, we regard the detection of prostate cancer as a binary classification problem. 

Specifically, for each training subject, all voxels in cancer-related ROIs are regarded as 

positive samples and the voxels in noncancer-related ROIs are treated as negative samples. 

To avoid the sample imbalance problem (i.e., the number of positive samples is far smaller 
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than that of negative samples), in our experiments, we use only voxels around cancer regions 

as negative samples. Figure 4 shows the acquisition method for both positive samples and 

negative samples on two subjects. In Fig. 4, we denote the yellow dash-dot curve and the 

blue solid curve as the prostate region and the prostate cancer region, respectively, while the 

red dot curve is generated through expanding two pixels from the blue solid curve, and the 

green dash curve is generated by expanding some pixels from the red dot curve. As shown in 

Fig. 4, we regard all voxels within the blue solid curve as positive samples, and voxels in the 

region between the red dot curve and green dash curve as negative samples. It is worth 

noting that (a) the samples between blue solid curve and red dot curve might be mislabeled 

samples, so we discard them to avoid the effect of mislabeled samples; (b) how many pixels 

are expanded from the red dot curve depends on the number of positive samples, since we 

always wish the number of negative samples is approximate to the number of positive 

samples; (c) expanding more (than 2) pixels from the cancer annotation is more reasonable, 

but we only expand 2 pixels because most cancer regions are in PZ region and it is very 

possible to make some negative samples totally outside of the prostate region when we 

expand more pixels from the cancer annotation.

In addition, we construct a SAE model for each of three MRI modalities using the same 

setting. Specifically, for each voxel from training set, the 3D patch (with the size of 9 × 9 × 

3) centered at this voxel is used as the input to the SAE model. There are four layers in each 

SAE model, and the number of unit in each layer is 243, 160, 80, and 40, respectively. Note 

that, we determined the numbers of hidden units by a grid search within a space of [120, 

160, 200]−[60, 80, 100]−[30, 40, 50]. In the hierarchical classification scheme, 10 random 

forest classifiers are constructed for the compromise of computational cost and the 

classification accuracy. In each of these random forest classifiers, we adopt the same 

parameters as in,17 i.e., the number of classification trees is 40 and the tree depth is 50 with 

a minimum of eight sample numbers for each leaf node. In the training stage, we use all 

positive samples and partial negative samples (around cancer regions) to train SAE models 

and hierarchical classifiers; in the testing stage, we treat each voxel in the entire prostate as a 

testing sample, and classify it by using the trained hierarchical classifiers.

3.C. Evaluation methods

In this work, we employ three measure criteria to evaluate the performance of our proposed 

method, including section-based evaluation (SBE),36 sensitivity and specificity. In the 

following, we describe briefly the three measurements.

SBE is defined as a ratio of the number of the sections that automatic method identifies 

correctly to the number of the total sections that the prostate is divided into. Letting n be the 

number of the total sections that the prostate is divided into, and As and Bs be the detection 

results of the s-th section by automatic method and expert, respectively, the SBE can then be 

formulated as follows:

(1)
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where L(As, Bs) is used to estimate whether As and Bs have the same detection results. If 

yes, L(As, Bs) = 1; else L(As, Bs) = 0. Note that, As and Bs having the same detection results 

means that both automatic method and expert have detected the suspicious cancer ROIs on 

the s-th section or not. Obviously, the accuracy of SBE heavily depends on the number of 

sections of prostate division. The more sections prostate is divided into, the better SBE is 

able to evaluate the efficacy of a prostate cancer detection system. Usually, in clinical 

practice, a whole prostate is divided into six or 12 sections (shown in Fig. 5), and then the 

biopsy is performed in each section. In this situation, each MR image slice can be only 

divided into two or four parts which may be so large that need more shots for different 

points in each section to extract cancer tissue. In this study, in the view of the size of each 

prostate part, we divide the prostate into some sections as shown in Fig. 5(c). That is, the 

base and mid parts of the prostate are divided into nine sections, while the apex is divided 

into four sections. Figure 5 shows the division results of a typical prostate slice by using 

different division sections. From the figure, we can observe that we can more accurately 

identify cancer sections by dividing the prostate into these fine sections.

Sensitivity (SEN) and specificity (SPE) are very popular measure methods used in detection 

of prostate cancer. In this work, since the detection results of prostate cancer is used for later 

biopsy, we reformulate the sensitivity and specificity based on the divided prostate sections, 

instead of voxels. That is, the sensitivity is defined as the ratio of the number of true 

identified cancerous sections to the sum of the number of true identified cancerous sections 

and the number of cancerous sections identified as normal sections, and specificity is 

defined as the ratio of the number of true identified normal sections to the sum of the 

number of true identified normal sections and the number of normal sections identified as 

cancerous sections.

3.D. Experimental results and analysis

3.D.1. Evaluation of hierarchical classification—In order to evaluate the 

effectiveness of our hierarchical classification method, we investigate probability maps 

obtained from classifiers in different layers. Figure 6 illustrates the ground truth and the 

probability maps obtained by classifiers on three testing subjects in the 1st layer, the 2nd 

layer, the 3rd layer, and the 10th layer, respectively. To compare the classification results of 

each layer classifier clearly, we only show the ground truth on the original MRI. From Fig. 

6, we can obtain the following observations. (a) As shown in the first classification results 

using the 1st layer classifier, there is a problem of spatially inconsistent classification. This 

can be attributed to the fact that the probability maps are estimated with only the appearance 

features, i.e., the learned high-level features, and no spatial information about the nearby 

structures is used. (b) In the subsequent iterations, cancer probability maps become more 

and more accurate and clearer, by comparing to the ground truth. In other words, by using 

context features of cancer probability map, our classification results have more uniform high 

values in the region of the prostate cancer while low values in the background. The 

underlying reason could be that the context features extracted from the previous probability 

map do help refine the classification results via the hierarchical classification procedure. (c) 

The classification result of the 3rd layer classifier is very similar with that of the 10th layer 

classifier, which indicates that our hierarchical classification can gain satisfying 
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classification result after the second iteration. In addition, Fig. 7 shows the influence of 

classifier number on the SBE results achieved by the proposed method. It can be seen that 

the SBE becomes stable after using the 3rd classifier (i.e., two iterations).

3.D.2. Evaluation of prostate cancer detection results—In this sub-section, we use 

SBE, sensitivity and specificity to evaluate the performance of prostate cancer detection 

achieved by our proposed methods and those comparison methods. Specifically, we perform 

prostate cancer detection by comparing the proposed hierarchical classification scheme with 

the conventional one-layer random forest classifier using five kinds of features (i.e., intensity 

features, Haar-like features, LBP features, HOG features, and the learned high-level 

features). The results on 21 subjects are reported in Table II. One could observe two main 

points from Table II. First, compared with the traditional classification method (i.e., the one-

layer random forest), the proposed hierarchical classification method achieves much better 

results in terms of SBE and specificity, regardless of the use of different features. It 

demonstrates that the context features obtained from our proposed hierarchical classification 

approach is effective in refining the detection result. So, we believe that context features can 

provide complementary information for different types of features. Second, methods using 

our proposed high-level features consistently outperform those using the conventional 

features. These results validate the efficacy of our proposed high-level feature extraction 

method.

Furthermore, we show the detection results achieved by different methods based on our 

hierarchical classification methods on two typical subjects in the 1st to the 5th columns of 

Fig. 8, where the yellow dashed lines represent the division sections for a prostate, the green 

curves indicate the prostate region, the blue curves indicate manual segmentations (ground 

truth), and the red curves denote the segmentation results produced by methods using 

different feature representations including intensity features, Haar-like features, LBP 

features, HOG features, and our high-level features. From the 1st to the 5th columns of Fig. 

8, one can observe that (a) the result of proposed method is better than other four methods, 

and is very similar to the ground truth, which indicates the efficacy of our proposed method. 

(b) Our method not only accurately locates PZ cancer (Subject 1), but also can locate TZ 

cancer (Subject 2) which is more difficult to detect than PZ cancer. (c) For both Subject 1 

and Subject 2, all of used methods can accurately locate cancer regions, but some of 

detected cancer regions by the comparison methods are noisy, which could result in 

identification of more noncancer regions as suspicious cancer regions for guiding needle 

placement, while the detected cancer regions by our method are much clearer.

In addition, we also evaluate the performance for the case of using only using each hidden 

layer feature representation of SAE to construct a hierarchical classification model. The 

SAE model, used in our work, consists of four layers, i.e., one input layer (intensity 

features), two hidden layers, and one output layer (high-level features). The average SBE by 

using each layer features is 88.07%, 88.96%, 89.54%, and 89.90%, respectively. The 

average sensitivity is 90.68%, 91.14%, 91.37%, and 91.51%, respectively. And the average 

specificity is 87.21%, 87.92%, 88.16%, and 88.47%, respectively. From these results, it can 

be seen that the detection performance is better and better with the use of more layers in 

SAE.
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3.E. Extension by combining high-level features and original intensity features

Recent studies18,24 show that combining high-level features and hand-crafted features can 

help build more robust classification models. In the following, we perform experiments by 

using the concatenation of the low-level original intensity features and learned-based high-

level features to construct a hierarchical classification model. The experimental results are 

shown in Table III. From Table III, we can observe that SBE, SEN, and SPE are improved 

after combining the low-level features and high-level features, which demonstrates that the 

original low-level features are still informative for helping detection of prostate cancer, once 

combined with the latent feature representations. Also, cancer detection results by using the 

combination of high-level features and intensity features are shown in the last column of Fig. 

8, where we can observe that the detection results using combined features are relatively 

smoother than those using only high-level features, especially for subject 2.

4. DISCUSSION

Although our proposed method achieves performance enhancements, there exist some 

limitations and disadvantages. First, we used a relatively small database (21 patients), 

therefore the network structures used to discover high-level feature representation in our 

experiments are not necessarily optimal for other databases. We believe that intensive studies 

such as learning the optimal network structure from big database are needed for the practical 

use of deep learning and also extensive validation of our method on a larger scale of dataset 

will be more convincing. Second, our proposed method needs to learn SAE deep learning 

networks and train multiple random forest classifiers iteratively, so it is time-consuming in 

training stage. But, once SAE network and classifier are obtained, it will take less than a 

minute to get the result for a given patient data in Windows system with Intel core i5 and 

16G memory. Third, we independently learned a high-level feature representation for each 

type of multiple MR images and fused them into a vector by a simple concatenation, thus the 

complementary information to each other was not used. Actually, each image modality 

provides different information. For example, T2-weighted MRI can provide the excellent 

anatomic detail, while DWI can evaluate degree of invasion in quality and quantity. It is 

interesting to investigate how to efficiently fuse the information of multiparametric MR 

images. Lastly, we should mention that we did not distinguish cancers in PZ and TZ 

although there are distinct differences between them in both imaging and biological features. 

As PIRADS have shown different guidelines for each of these zones, how to use the 

important prior knowledge to guide cancer identification in PZ and TZ will be a problem 

worthy of study in our further work.

5. CONCLUSION

In this study, we have proposed a novel multiparametric MR images-based method for 

automatic detection of prostate cancer by using learned high-level feature representations 

and hierarchical classification method. Different from conventional prostate cancer detection 

methods that identify cancer only in the peripheral zone (PZ), or classify suspicious cancer 

ROIs into benign tissue and cancer tissue, our proposed method directly identifies cancer 

regions from the entire prostate. Specifically, we first use an unsupervised deep learning 
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technique to learn the intrinsic high-level feature representations from multiparametric MRI. 

Then, we train a set of random forest classifiers in a hierarchical manner, where both the 

learned high-level features and the context features obtained from classifiers in different 

layers are used together to refine the classification probability maps. We evaluate the 

effectiveness of the proposed method on 21 prostate cancer patients. The experimental 

results show that the high-level features learned from our method achieve better performance 

than the conventional handcrafted features, (e.g., LBP and Haar-like features) in detecting 

prostate cancer regions, and also the context features obtained from our proposed 

hierarchical classification approach are effective in refining detection result.

APPENDIX

Area under the receiver operating characteristic (ROC) curve (denoted as AUC) is a fair way 

to compare different approaches. Table A1 lists the average AUC values achieved by 

different feature representations. From Table A1, two observations can be made: (a) the 

proposed high-level features method has AUC values that are within 0.01 of the highest 

performing Haar-like features method for both the traditional one-layer random forest and 

the proposed hierarchical classification, and (b) the proposed hierarchical classification 

method achieves better AUC than the traditional one-layer random forest classification 

regardless of the use of different features, indicating that the proposed hierarchical 

classification is effective in refining detection results. In addition, with the higher SBE 

results and also the high AUC results, the proposed method is promising for guiding prostate 

biopsy, targeting the tumor in focal therapy planning, triage and follow-up of patients with 

active surveillance, as well as decision making in treatment selection.

Table A1

The average AUC achieved by different feature representations.

Method
One-layer random

forest
Proposed hierarchical

classification

Intensity features 0.698 0.743

Haar-like features 0.811 0.826

LBP features 0.742 0.763

HOG features 0.753 0.784

Proposed high-level features 0.805 0.817
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Fig. 1. 
The illustration of learning the high-level representation from multiparametric MRI. [Colour 

figure can be viewed at wileyonlinelibrary.com]
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Fig. 2. 
Overview of the proposed hierarchical classification method. [Colour figure can be viewed 

at wileyonlinelibrary.com]
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Fig. 3. 
Sample of T2-weighted MRI, DWI, and dADC. In the second row, inner and outer curves 

denote prostate cancer regions and prostate regions, respectively. [Colour figure can be 

viewed at wileyonlinelibrary.com]
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Fig. 4. 
The acquisition of positive samples and negative samples. [Colour figure can be viewed at 

wileyonlinelibrary.com]
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Fig. 5. 
Conventional prostate division (6-section division and 12-section division) and our section 

division. [Colour figure can be viewed at wileyonlinelibrary.com]
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Fig. 6. 
The probability maps using different classifiers, along with the ground truth (shown on DWI 

slices). [Colour figure can be viewed at wileyonlinelibrary.com]
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Fig. 7. 
The influence of the number of classifiers on the SBE results achieved by the proposed 

method. [Colour figure can be viewed at wileyonlinelibrary.com]

Zhu et al. Page 22

Med Phys. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wileyonlinelibrary.com


Fig. 8. 
Comparison of cancer detection results by using different feature representations, shown on 

DWI slices of two subjects. [Colour figure can be viewed at wileyonlinelibrary.com]
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Table III

Experimental results using the combination of high-level features and intensity features.

Method SBE (%) SEN (%) SPE (%)

High-level features 89.90 ± 4.23 91.51 ± 2.53 88.47 ± 3.89

High-level features + low-level features 91.04 ± 3.94 92.32 ± 1.97 89.38 ± 3.01
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