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Abstract

Prostate cancer is one of the major causes of cancer death for men. Magnetic resonance (MR) 

imaging is being increasingly used as an important modality to localize prostate cancer. Therefore, 

localizing prostate cancer in MRI with automated detection methods has become an active area of 

research. Many methods have been proposed for this task. However, most of previous methods 

focused on identifying cancer only in the peripheral zone (PZ), or classifying suspicious cancer 

ROIs into benign tissue and cancer tissue. Few works have been done on developing a fully 

automatic method for cancer localization in the entire prostate region, including central gland 

(CG) and transition zone (TZ). In this paper, we propose a novel learning-based multi-source 

integration framework to directly localize prostate cancer regions from in vivo MRI. We employ 

random forests to effectively integrate features from multi-source images together for cancer 

localization. Here, multi-source images include initially the multi-parametric MRIs (i.e., T2, DWI, 

and dADC) and later also the iteratively-estimated and refined tissue probability map of prostate 

cancer. Experimental results on 26 real patient data show that our method can accurately localize 

cancerous sections. The higher section-based evaluation (SBE), combined with the ROC analysis 

result of individual patients, shows that the proposed method is promising for in vivo MRI based 

prostate cancer localization, which can be used for guiding prostate biopsy, targeting the tumor in 

focal therapy planning, triage and follow-up of patients with active surveillance, as well as the 

decision making in treatment selection. The common ROC analysis with the AUC value of 0.832 

and also the ROI-based ROC analysis with the AUC value of 0.883 both illustrate the effectiveness 

of our proposed method.
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1. Introduction

Prostate cancer is the most commonly diagnosed non-skin cancer and the second leading 

cause of cancer death among U.S. men [1]. Current clinical practice for the diagnosis of 

prostate cancer is often based on a transrectal ultrasound (TRUS) biopsy, after the patient 

shows an elevated serum prostate specific antigen (PSA) level. A large screening trial using 

PSA and TRUS has shown that it is possible to reduce prostate cancer mortality by 20–30% 

[2]. However, these studies have also shown that PSA testing in combination with TRUS 

biopsies has a relatively low specificity. Additionally, cancer is often under-graded in TRUS 

biopsies [3]. These problems lead to over-diagnosis and overtreatment of patients for 

prostate cancer [4]. Alternatively, multi-parametric high-contrast magnetic resonance (MR) 

imaging provides a powerful and noninvasive imaging tool for detecting suspicious 

cancerous tissues [5], as shown in Fig. 1, which includes T2, diffusion-weighted (DW) 

imaging (DWI) and apparent diffusion coefficient (ADC) MR images. Since ADC MR 

image is calculated from DWI and related to the b-value, in our experiments, only one type 

of ADC MR image – dADC (the regular ADC map) – is used.

Nowadays, MRI is often used as a second line modality after repeating negative TRUS 

biopsies. One of the reasons why MRI has not yet progressed to the first line modality for 

prostate cancer diagnosis is mainly the need of high-level expertise of radiologist to read 

prostate MRI. Such expertise is not widely available [6,7]. Besides, the MRI-based diagnosis 

suffers from large observer variability due to the difficulty of the task [7]. Additionally, due 

to the large number of 3D images, reading prostate MRI data is quite time-consuming and 

labor-intensive.

Automated computer-aided detection and diagnosis (CAD) of prostate cancer could help 

reduce the above problems and open the door to prostate cancer screening using multi-

parametric MRIs. In the recent decade, computer-aided detection and diagnosis of prostate 

cancer is becoming an active field of research and many methods have been proposed [6,8–

16]. However, there are still some limitations for the previous works:

1. Prostate consists of several main regions, namely peripheral zone (PZ), central 

gland (CG), and transition zone (TZ). In MR images, cancer in the PZ has richer 

textural information than that in the CG [17], which makes the computer-aided 

detection relatively easy in the PZ. Therefore, early researches of MRI-based 

prostate cancer detection mainly focused on identification of cancer only in the 

PZ, instead of the entire prostate region. For example, Chan et al. [10] were the 

first to implement the prostate cancer detection method by using multi-

parametric MRIs. In their paper, they used the SVM classifier to identify prostate 

cancer in the PZ by combining information from three different MRI techniques: 

T2-weighted (T2W), T2-mapping, and line scan diffusion imaging (LSDI). Niaf 

et al. [8,14] and Vos et al. [9] proposed machine-learning methods for suspicious 

region of interest (ROI) classification in the PZ. In addition, many techniques 

have also been developed in the imaging field to facilitate image-guided prostate 

cancer detection in the PZ. For example, Langer et al. [15] developed a multi-

parametric model suitable for prospectively identifying prostate cancer in the PZ 
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by using MRI. However, many studies have demonstrated that prostate cancer is 

not limited to the PZ, but also appears in the CG [11,12,16] and TZ [18,19]. But, 

identifying TZ tumor is a difficult task [20] since the TZ is the site of origin of 

benign prostatic hyperplasia (BPH), which can have a heterogeneous appearance 

[21,22].

2. In the literature, prostate cancer is usually detected via a two-stage CAD system. 

In the first stage, the suspicious cancer ROIs are manually delineated by 

radiologist. In the second stage, those suspicious ROIs are classified into benign 

and cancer tissues by using textual information within those ROIs. Most of these 

two-stage CAD systems are semi-automatic, as the suspicious cancer ROIs often 

have to be delineated manually by radiologist, which is labor-intensive, time-

consuming, and subject to manual errors. For example, Niaf et al. [8,14] 

proposed a CAD system, aimed to separate cancer ROIs from benign ROIs by 

using supervised learning methods. In their methods, suspicious cancer ROIs 

were manually delineated by two persons, i.e., one histopathologist and one 

researcher, by using histological sections as gold standard. Compared with these 

two-stage methods, our proposed method directly localizes cancer regions voxel-

by-voxel, similar to the detection systems proposed by Tiwari et al. [23] and 

Sparks and Madabhushi [24], thus is able to detect much smaller cancer regions. 

This aspect is important to guide prostate biopsy, as well as precisely target the 

tumor in focal therapy planning. Besides, our method is fully automatic and also 

computationally efficient.

3. There are still a few works that classify the whole prostate region into benign or 

malignant tissues, especially in the early diagnosis of prostate cancer. Firjani et 

al. [13] used DWI and a KNN-based classifier to classify the prostate into benign 

or malignant regions based on three appearance features extracted from the 

registered ADC images with different b-values. With their methods, prostate with 

malignant or benign cancer could be discriminated, but the identified cancer 

regions were too coarse to guide prostate biopsy. In other words, such method 

only focused on determining whether cancer exists in the prostate, which cannot 

be adopted for guiding prostate biopsy that needs more accurate cancer 

localization.

Litjens et al. [25] proposed an automated zone-specific CAD pipeline for prostate cancer 

detection. They mainly used an atlas-based method to segment the prostate into PZ and TZ. 

Then, they detected cancer from each zone. Recently, they [6] again proposed a novel and 

fully automatic CAD system to detect prostate cancer. Similar to the method in [25], in the 

first stage of their method, for detecting the candidate regions, they used a multi-atlas-based 

prostate segmentation, three different voxel classifiers (by integrating various features such 

as intensity, pharmacokinetic, texture, blobness and anatomical features from multi-

parametric MRIs), as well as local maxima detection. Then, in the second stage, the statistics 

(of voxel-wise features), local contrast, symmetry, and shape features were extracted as 

candidate representations and further input to a classifier for both cancer ROI identification 

and segmentation. Finally, with lesion-based FROC and patient-based ROC analysis, their 

system showed a reasonable performance in prostate cancer detection.
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Inspired by these existing methods, T2, DWI, and ADC map are used in our work for 

prostate cancer localization. As demonstrated in the literature, by combining any two of 

three multi-parametric MRIs, prostate cancer regions can be more effectively discriminated 

from non-cancerous regions. For instance, Miao et al. [26] found that the performance of 

DW imaging in prostate cancer detection was significantly better than that of T2W imaging. 

Shimofusa et al. [27] compared the prostate cancer detection ability of T2W imaging 

without or with DW imaging. Morgan et al. [28] compared the performance of prostate 

cancer detection by using T2W alone, and also jointly using T2W and DWI or ADC map. In 

their works, by analyzing the statistical results, they concluded that, compared with the cases 

of using T2W without or with ADC map, using T2W with DWI had the superiority in cancer 

detection. All these methods were based on medical statistical analysis, and their results 

reported in the papers demonstrated that multi-parametric MRIs provided better information 

about cancerous and normal regions in the prostate, when compared to the methods using a 

single MRI modality. This was similarly verified by Ozer et al. [29].

To deal with the aforementioned limitations of previous works, in this paper, we propose a 

novel learning-based multi-source integration framework, similar to the method proposed by 

Montillo [30], for accurate localization of prostate cancer within the entire prostate. 

Specifically, in our method, we first employ random forests [31] to train a classifier based on 

the training subjects with multi-parametric MRIs (T2, DWI, and dADC, as shown in Fig. 1). 

The trained classifier provides an initial cancer probability map for each training subject. 

Then, inspired by auto-context model [32,33], the estimated tissue probability map is further 

used as additional source of information to train the next classifier, which integrates the 

high-level context features (from the estimated cancer probability map) with the appearance 

features (from multi-parametric MRIs) for refining cancer classification. By iteratively 

training the classifiers based on the updated cancer probability map (and the multi-

parametric MRIs), we can finally obtain a sequence of classifiers. Similarly, in the 

application stage, given a target subject, the learned classifiers are sequentially applied to 

iteratively refine the estimation of cancer probability map by combining the multi-

parametric MRI information with the previously-estimated cancer probability map. We have 

validated our proposed method on 26 patient subjects, with promising performance.

The rest of the paper is organized as follows. A detailed description of source images and 

our proposed method are introduced in Section 2. Experimental design, results and analysis 

are then presented in Section 3, followed by the Discussions and Conclusion sections.

2. Materials and method

2.1. Data and image preprocessing

In our work, all patients underwent prostatectomy and preoperative multi-parametric 

endorectal MR imaging, including all sequences of T2W and DW MR imaging in the axial 

direction with Philips MR scanners (Achieva; Philips Healthcare, Eindhoven, the 

Netherlands, a 3T imager) between March 2008 and March 2010, and have not been 

previously treated before (such as with radiation or hormone). ADC values were calculated 

from DW MR images by using a linear least squares [34] fitting to the logarithmic form of a 

mono-exponential DW signal model, as follows:
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(1)

where S0 and Sb are the DW MR signal intensities with diffusion weighting of 0 and b, 

respectively [35–37]. Here, we use one kind of ADC image – dADC image – as a source 

image for cancer localization as shown in Fig. 1. Multi-parametric MRI data (T2, DWI and 

dADC) from 26 patients are included in this study. Among 26 subjects, there are totally 42 

tumors, including 29 PZ tumors, 7 CG tumors and 6 TZ tumors.

All MR images were acquired with an endorectal coil (Medrad; Bayer Healthcare, 

Warrendale, PA) and a phased-array surface coil with the aforementioned Philips MR 

scanners. Immediately before MR imaging, 1 mg of glucagon (Glucagon; Lilly, 

Indianapolis, Ind) was injected intramuscularly to decrease peristalsis of the rectum. The 

data acquisition parameters [38] are shown in Table 1.

The reference standard of prostate cancer foci in the MR images was established through a 

systematic consensus-seeking correlative review of histological findings and MR images by 

a genitourinary pathologist (with 8 years of experience in genitourinary pathology) and a 

radiologist (with 9 years of experience in prostate MR imaging). The pathologist sliced each 

prostate and identified all distinct tumor foci larger than approximately 5 mm in diameter, 

and then the radiologist manually outlined the corresponding ROIs of the tumor foci on the 

MR images according to the tumor regions on the histological slices by the pathologist. 

Totally, 1–3 cancer delineations on MR images of each subject were cooperatively done 

manually by radiologist and the pathologist. Note that these cancer ROIs were mostly 

outlined on T2 images, and some were outlined on DW images.

We resampled all images into the size of 512 × 512 with the resolution of 0.3125 mm × 

0.3125 mm × 3 mm. For the alignment, since the dADC image was generated from DWI, we 

need only to align DWI and dADC images to T2 image for each subject. Through our 

experiments, we found that the results of registration affected the final voxel level 

classification, e.g., better registration leads to better cancer region localization. We also 

found that the linear registration method can meet requirements in our work due to no large 

deformation occurring among multi-parametric MR images of each subject. Here, we use 

the FMRIB’s linear image registration tool (FLIRT) [39] to implement this procedure. 

However, since the contrast of the prostate and other tissues in DWI and dADC is not high 

enough while the boundary of bladder is obvious, we first align T2 image to DWI along with 

the bladder masks, and then align DWI to T2 image with the prostate masks. Histogram 

matching [40] was also performed on each type of MRI across different subjects.

2.2. Prostate cancer localization with random forests and auto-context model

In our method, we formulate the localization of prostate cancer as a two-class classification 

problem. To solve such a classification problem, we proposed a novel learning-based multi-

source integration framework by employing random forests [31] and auto-context model 

[32,33]. For simplicity, let Nsub be the total number of the training subjects and let 
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 be a set of multi-parametric MRIs. As a supervised 

learning method, our method consists of both training and testing stages. The flowchart of 

training stage is shown in Fig. 2. In the training stage, we will train a sequence of 

classification forests, each with the input of multi-source images/maps. In the first iteration, 

the classification forest takes only the multi-parametric MRIs I as input, and uses the image 

appearance features extracted from different multi-parametric MRIs for voxel-wise 

classification. By applying the trained forest in the first iteration, each ith training subject 

will produce tissue probability maps for prostate cancer  and non-prostate cancer , 

respectively, as shown in the second column of Fig. 2. In the later iterations, as inspired by 

the auto-context model [32,33], the tissue probability maps 

obtained from the previous iteration will act as additional source information for training. 

Specifically, the high-level context features are extracted from the tissue probability maps to 

assist the classification, along with appearance features from the multi-parametric MRIs. 

Since context features are informative about the nearby tissue structures for each voxel, they 

encode the spatial constraints into the classification, thus improving the quality of the 

estimated tissue probability maps, as also demonstrated in Fig. 2. Then, the tissue 

probability maps are iteratively updated and fed into the next training iteration. Finally, a 

sequence of learned classifiers will be obtained.

Similarly, in the testing stage, given a target subject with multi-parametric MRIs, we can 

obtain the initial tissue probability map by applying the trained classifier in the first iteration 

using only the multi-parametric MRIs. In the later iterations, along with multi-parametric 

MRIs, the tissue probability maps resulted from the previous iteration are also fed into the 

next classifier for refinement. Fig. 3(a)–(c) shows examples by applying a sequence of the 

learned classifiers for cancer localization in the PZ, CG, and TZ, respectively. As we can see 

from Fig. 3, the cancer probability maps are updated with iterations and become more and 

more accurate. In the following, we will detail on how to train the classifiers via random 

forests.

2.3. Random forests

Random forest [31] is an ensemble learning method for classification or regression. As a 

machine learning method, random forest has been successfully applied in many fields, such 

as bioinformatics, computer vision, and medical image analysis [41,42].

In our work, we employ random forest to implement cancer localization for a given testing 

voxel x, based on its high-dimensional feature representation f(x,I), where I is a set of multi-

parametric MR images as we define in the above. When the random forest is implemented, 

at each iteration, totally T decision trees, indexed by t ∈ [1, T], are used as classification 

trees. In the training stage, in the first iteration, each tree t learns a weak class predictor pt(c|

f(x, I)) using features extracted from a set of multi-parametric MR images I, where c is the 

label of cancer or non-cancer. When the training stage starts, according to the feature 

representation, the training samples are assigned to the left and right child nodes at each 

parent node through recursive splitting. At each node, to obtain the optimal split for 

maximizing the information gain [43], a number of random splits on different combinations 
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of features and thresholds are considered. The tree keeps growing until it reaches the 

constraint conditions. For example, it reaches a specified depth (d), or the criterion that no 

tree leaf node should contain less than a certain number of training samples (smin). Finally, 

we associate each leaf node (l) with the empirical distribution  over the two 

classes by the proportions of the labels of all training samples which reach that leaf node.

In the testing stage, by applying the learned split functions, each testing voxel x is 

independently tested. When the testing sample arrives at a leaf node lx in each trained tree t, 
the empirical distribution of that leaf node is used to determine the class probability of the 

testing sample x, i.e., . Finally, we can obtain the class 

probability for the testing sample x by computing the mean of the class probabilities from all 

individual trees, i.e., . In our work, what we should solve is a 

two-class classification problem. Therefore, in the trained random forest, for each ith 

training subject at the first iteration, only cancer and non-cancer probability maps 

( ) are generated, as shown in the second column of Fig. 2.

2.4. Appearance features and context features

Random forest can deal with a large number of features efficiently. In other words, for 

random forest, in our study, any kind of features from multi-parametric MRI and tissue 

probability maps can be extracted and used for classification, such as the histogram of 

oriented gradients (HOG) features [44], local binary pattern (LBP) features [45], Gabor 

features [46], and any kind of gradient features [47]. In fact, in our implementation, 

considering the efficiency, we use the random Haar-like features [48] for both appearance 

features and context features. Note that the Haar-like features have been used widely in 

many studies of pattern recognition or machine learning [49–51]. Specifically, for each voxel 

x, its Haar-like features are computed as the local mean intensity of any randomly displaced 

cubical region R1 or the mean intensity difference over any two randomly displaced, 

asymmetric cubical regions (R1 and R2) within the image patch R [52]:

(2)

where R is the patch centered at voxel x, I is any kind of source image, and the parameter b 
∈ {0, 1} indicates whether one or two cubical regions are used (as shown in Fig. 4, for b = 0 

and b = 1). In the image patch R, its intensities are normalized to the unit ℓ2 norm [53,54]. In 

theory, for each voxel we can determine an infinite number of such features.

3. Experimental results and analysis

In this section, the proposed method will be extensively evaluated on 26 subjects using 

leave-one-out cross-validation. Results of the proposed method are compared with the 

manual ground-truth segmentations, as well as other conventional methods.

Qian et al. Page 7

Comput Med Imaging Graph. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Evaluation methods

In the following, we mainly employ the section-based evaluation (SBE) [55], sensitivity, 

specificity, and Dice ratio, to measure the performances of different methods.

3.1.1. Section-based evaluation (SBE)—Section-based evaluation (SBE) is defined as 

a ratio of the number of the sections that automatic method localizes correctly to the number 
of the total sections that the prostate is divided into:

(3)

(4)

where label(·) in Eq. (3) represents that the section is cancer or non-cancer; As and Bs are the 

localization results of the section s through automatic method and expert, respectively; and n 
is the number of the total sections that the prostate is divided into.

The SBE is an effective method widely used for evaluating the performance of the prostate 

cancer section localization. Generally, in the clinical setting, when a patient is diagnosed as a 

suspicious prostate cancer sufferer with a high PSA level or an abnormal screening DRE, a 

biopsy is frequently suggested [56]. Often, when doing a biopsy, the prostate is divided into 

sections based on the number of biopsy points to use, followed by shooting a needle in each 

section to extract the respective tissue sample. A popular way is to divide prostate into 6 

sections (for 6 point biopsy) [57]: right base, left base, right mid, left mid, right apex, and 

left apex. Alternatively, some doctors will choose 12 sections by further dividing each of 

these 6 sections into medial and lateral parts. This method is very popular in prostate cancer 

diagnosis in clinic, and it is also the standard of the prostate biopsy, as shown in the 

schematic diagram at the top of Fig. 5. However, 6- or 12-sections partition does not 

consider the shape of prostate. We take a typical slice of the mid part of the prostate as an 

example in Fig. 6. The 1st row and 2nd row show the division results on a MRI slice with 6-

section division and 12-section division, respectively. It can be seen that the 6- or 12-section 

division will generate too large section for a biopsy needle, which may result in more shots 

to different points in each section for accurate extraction of cancer tissue. To reduce the 

number of the locations for biopsy in each section while still keeping the accuracy of 

cancerous section localization, we divide the prostate into sections by considering the size of 

each prostate part (base, mid-gland and apex). In general, as shown in the bottom of Fig. 5, 

the base and mid parts of the prostate are divided into 9 sections, while the apex is divided 

into 4 sections. For a typical prostate slice mentioned above, the division result is shown in 

the 3rd row of Fig. 6. It can be observed that, by dividing the prostate into these fine 

sections, we can more accurately localize cancer sections, compared with the conventional 

6- and 12-section partition strategies.
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3.1.2. Sensitivity and specificity—We employ two important statistical measures: 

sensitivity and specificity. Here, besides the standard voxel-wise definitions of sensitivity 

and specificity, we also reformulate the sensitivity and specificity based on the divided 

prostate sections:

(5)

(6)

where TCS is the number of true localized cancerous sections, FNS is the number of 

cancerous sections localized as normal sections, TNS is the number of true localized normal 

sections, and FCS is the number of normal sections localized as cancerous sections.

3.1.3. Dice ratio—Dice ratio [58] measures the overlap between our localized cancer 

region and the ground-truth cancer region. The Dice ratio is formulated as:

(7)

where Ipre is our predicted cancer region and Igrd is the ground-truth cancer region.

3.2. Parameters setting

In the random forest training, the number of classification trees is 20; the maximum tree 

depth is 50; the number of randomized Haar-like features is 10,000 for both image 

appearance and context features; and the minimum sample number for each leaf node is 8. 

These parameters are determined via cross-validation. Specifically, we first study the impact 

of the number of trees, T, on cancer section localization, as shown in Fig. 7(a). We set the 

maximal tree depth as 50 and the minimal number of leaf nodes as 8 according to previous 

work [59]. In Fig. 7(a), the SBE increases from 0.66 (T = 2) to 0.87 (T = 15), the standard 

deviation decreases from 0.030 (T = 2) to 0.013 (T = 15), and the cancer localization 

performance tends to be stable when T ≥ 20. Therefore, to produce reasonable and accurate 

results, we set T = 20 in our work. Fig. 7(b) shows the impact of the maximum tree depth. 

We find that the SBE gradually increases as the depth varying from 5 to 20 and then 

becomes stable as the depth reaches over 40. Fig. 7(c) shows the impact of the minimum 

sample number for each leaf node. The performance becomes stable when the minimum 

sample number is less than 8, while the performance starts decreasing when the minimum 

sample number is larger than 10. The possible reason is that the samples with cancer label 

and the samples with non-cancer label fall into the same leaf node because of setting too 

large value for the minimum sample number in each leaf node, which results in fuzzy 

classification. As for the number of iterations, we find that the satisfactory performance can 
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be achieved in 3 or 4 iterations, and, after that, the performance becomes stable. In this 

paper, we conservatively set the iteration number as 10, to obtain both effectiveness and 

accuracy for our proposed method.

3.3. Feature types

In our work, we choose the random Haar-like features for the appearance features and 

context features. To demonstrate the advantage of random Haar-like features, we make 

comparisons with other four types of features: HOG features [44], LBP features [45], Gabor 

features [46] and gradient features [47]. As shown in Table 2, we can find that the sensitivity 

with random Haar-like feature is a little bit lower than that with LBP feature, and also the 

specificity with random Haar-like feature is lower than that with HOG feature. However, the 

overall performance with random Haar-like feature is much better than the respective 

performances with other four types of features.

3.4. Importance of context features

In the proposed method, the context features play an important role. They can improve the 

accuracy of localization iteratively. Fig. 8 and Table 3 show the SBEs of our sections 

division on 26 patient subjects by sequentially applying the learned classifiers based on the 

multi-parametric MR images. It can be seen that the SBEs are improved with the iterations 

and also become stable after a few iterations. Specially, in the second iteration, the SBEs are 

improved greatly due to the integration of the previously estimated tissue probability maps 

for guiding the classification. These results demonstrate the importance of using context 

features for cancer localization.

The sensitivity and specificity of our cancer section localization with iterations are also 

shown in Table 3. It can be seen that there is a decrease, followed by an increase of both 

sensitivity and specificity with the increasing number of iterations. The main reason is that, 

in the first iteration, when no cancer probability maps are available, most of the localized 

cancer regions are larger than the ground truth, i.e., by the example shown in the second 

column of Fig. 2 and the example shown in Fig. 3(b); thus the sensitivity is higher and 

specificity is lower. With the increase of iterations, the localized cancer regions shrink and 

the final localized cancer regions become smaller than the ground truth, resulting in the 

decrease of sensitivity while increase of specificity. We can also find that the specificity is 

improved from 81.3% to 84.1% in the second iteration.

From Table 3, it can be seen that the section-based sensitivity and specificity, respectively, 

achieve the relative high values, i.e., 91.5% and 85.1%, with a few iterations. This means 

that almost no any cancer section is localized as non-cancer section and also most of the 

non-cancer sections are correctly localized. To verify the accuracy of cancer region 

localization with our method for potentially guiding biopsy, two typical prostate slices are 

taken as examples. For the first example shown in Fig. 9(a), our method can accurately 

localize cancer regions. For another example shown in Fig. 9(b), it can be seen that our 

method can not only localize the true cancer region but also provide another suspicious 

cancer region; both of these localized cancer regions are suspicious, which need to be tested 

by biopsy needle. However, compared with the traditional biopsy, in the second example, the 

Qian et al. Page 10

Comput Med Imaging Graph. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of sections to place the biopsy needle is the same, but the accuracy of localizing 

cancer sections is largely improved because of adoption of fine section division. Therefore, 

the proposed method with our section division method is very useful to guide prostate 

biopsy, which can reach a considerable performance gain by reducing the number of 

suspicious cancer sections as well as guaranteeing the accuracy of cancer section 

localization.

3.5. Performance of combining multi-parametric MRI

In the past decade, many studies have shown the improvement of cancer diagnosis or 

detection accuracy with combination of different types of MRI. For example, Wang et al. 

[60] and Kim et al. [61] validated that the single modality MRI, T2 or ADC map can be used 

for cancer detection. But the information from the single modality MRI is not rich enough to 

better differentiate cancer region from normal tissue. To illustrate the superior performance 

of cancer detection using multi-parametric MRI, we compared the performances using 

different combinations of image modalities as shown in Fig. 10. The SBE by combining all 

T2, DWI and dADC is 87.1%, which is better than the results obtained by any of other six 

combination cases (T2: 76.8%; DWI: 80.4%; dADC: 83.2%; T2 + dADC: 86.8%; T2 + 

DWI: 80.6%; DWI + dADC: 86.5%). By comparing the results only with single modality 

MRI, we can see that the performance of using dADC in prostate cancer localization is 

better than that of using either T2 or DWI, demonstrating that ADC map can provide more 

useful information for prostate cancer localization. Since ADC map is computed from DWI, 

these results also provide the evidence as concluded in [27–29]: DWI has outperformance 

over other existing MRI in prostate cancer localization and detection.

3.6. Comparisons with conventional methods

Due to the unavailability of codes and dataset, we cannot perform a fair comparison with 

other state-of-the-art prostate cancer localization methods. Therefore, in this section, we 

compared our method with other classification-based methods on the same dataset. More 

specifically, we compare the proposed method with four popular classification methods: (1) 

Naïve Bayes classifier [62], (2) Support Vector Machine (SVM) [63], (3) SVM with radial 

basis function (RBF) kernel (SVM + RBF) [64], and (4) AdaBoost [65], as detected below. 

In these methods, to achieve the best performance, we extract not only the Haar-like 

features, but also the HOG features [44], LBP features [45], Gabor features [46] and 

gradient features [47].

• Naïve Bayes classifier technique is based on the so-called Bayesian theorem, and 

is particularly well-suited when the dimensionality of the inputs is high. Despite 

its simplicity, Naïve Bayes classifier can often outperform more sophisticated 

classification methods. In the training stage, using a set of training samples, the 

method estimates the parameters of a probability distribution (i.e., Gaussian 

distribution), by assuming that features are conditionally independent given the 

class. In other words, all model parameters (i.e., class priors and feature 

probability distributions) can be approximated with the relative frequencies from 

the training samples. In the testing stage, for any unseen test sample, this method 
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computes the posterior probability of that sample belonging to each class, and 

then classifies the test sample according to the largest posterior probability.

• Support Vector Machine (SVM) is a supervised learning model associated with 

learning algorithms that analyze data and recognize patterns, which can be used 

for classification and regression. It is often used for solving two-class 

classification problem. Given a set of training samples, each belonging to one of 

the two categories, an SVM training algorithm builds a model, i.e., generating 

two optimal hyperplanes to separate the input samples into two categories and 

also preventing the samples from falling into the maximum margin (i.e., the gap 

between the hyperplanes). For the parameter setting, we choose the linear 

function and RBF as two candidate kernel functions and set both cost functions 

as 1, and the parameter gamma in RBF kernel is set as 1/k, where k is the 

number of training samples. Then, the learning model is generated by training 

the input training samples. Before training and testing, for each sample, 500 

discriminant features among all features are selected using feature selection 

method (such as Fisher Score [66]). In the application stage, the generated model 

is used for cancer prediction in the testing image.

• AdaBoost has been a mature and popular machine learning method for 

classification for decades. When training the input samples, it generates a series 

of weak learners by updating the weight on each training sample. At each 

iteration, a weak learner is selected and assigned with a coefficient such that the 

sum of training error of the boosting classifiers is minimized. These weak 

learners finally converge to a strong learner. We set the maximum number of 

iterations as 200 in the weak learner refining process to build a strong classifier. 

Finally, the generated classifier is used in the testing stage and then the tissue 

probability map is obtained.

Fig. 11 shows the comparison results using the four methods on the multi-parametric MR 

images of the same patient as shown in Fig. 6. The results of Naïve Bayes, SVM, SVM + 

RBF, AdaBoost and our proposed method are shown in the 1st, 2nd, 3rd, 4th and 5th rows, 

respectively, and further indicated by the orange, brown, cyan, green and blue contours. The 

1st, 2nd and 3rd columns represent the localization results with T2, DWI and dADC images, 

respectively. It can be observed that the result of proposed method is much better than other 

four methods, and is very similar to the ground truth. In the localization maps of other three 

methods except SVM + RBF, the localized cancer regions are noisy, which could result in 

more non-cancer regions localized as the suspicious cancer regions for guiding needle 

placement. In contrast, from the 5th row, we can see that, by using the proposed method, the 

localized cancer region is clear. On the other hand, for the result with SVM + RBF, although 

the localized cancer region is also clear, it is much smaller than the ground truth, and is also 

not as good as the result obtained by our proposed method.

3.6.1. SBE, sensitivity and specificity—For quantitative evaluation, the SBE, 

sensitivity and specificity on 26 subjects are shown in Table 4, which further illustrates the 

outperformance of the proposed method over other four methods. Specifically, the average 

SBE (87.1%), sensitivity (91.5%) and specificity (85.1%) of the proposed method are much 
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higher than those by any of other four methods: (1) SBE 68.5%, sensitivity 73.7% and 

specificity 65.9% by Naïve Bayes; (2) SBE 71.4%, sensitivity 72.6% and specificity 71.0% 

by SVM; (3) SBE 79.9%, sensitivity 66.1% and specificity 83.8% by SVM + RBF; (4) SBE 

68.0%, sensitivity 94.6%, and specificity 60.5% by AdaBoost. It can be seen that the SBE 

and specificity by our proposed method are significantly higher than those by Naïve Bayes, 

SVM, SVM + RBF and AdaBoost method. The sensitivity by the proposed method is 

slightly smaller than that by AdaBoost, but still much better than that by Naïve Bayes, SVM 

and SVM + RBF, respectively. All these results again demonstrate the performance of our 

proposed method than other four conventional methods.

3.6.2. Common ROC and ROI-based ROC analysis—To better validate the proposed 

method, we further employ the receiver operating characteristic (ROC) analysis method 

[67]. We use two kinds of ROC analysis methods. One is the common ROC analysis method 

[67,68] and the other is the ROI-based ROC analysis method [69].

The ROC curve is used to analyze the performance of a classifier system in many research 

fields, such as medicine, radiology, biometrics, machine learning and data mining [67]. The 

common ROC curve is built by analyzing the results from each testing subject. It illustrates 

the relationship between the true positive rate and the false positive rate at various threshold 

settings. On the other hand, the ROI-based ROC analysis was proposed by Obuchowski et al. 

[69]. They used it to detect and locate breast cancers. They partitioned the images into 

several ROIs. Every reader assigned a confidence score to each ROI. Finally, they used the 

ROI-based ROC analysis to access the reader’s ability of detecting and locating the 

abnormalities. In our work, we also use the ROI-based ROC analysis to evaluate the 

performance of our method. We divide the images into sections as shown in the bottom of 

Fig. 5. We choose the maximum value from the probabilities of all voxels in a section as the 

confidence score of each section, which results in localization of all suspicious cancer 

sections as well as fully convinced non-cancer ones, thus ensuring both accuracy and 

precision of cancer-section localization. We also calculate the area under the ROC curve 

(AUC) which can evaluate a classifier system quantitatively.

Fig. 12(a) shows common ROC curves, and Fig. 12(b) shows ROI-based ROC curves. The 

blue curve illustrates the ROC of our proposed method. As we can see from Fig. 12(a), along 

with the AUC value (0.832), our proposed method produces slightly better than that obtained 

by Naïve Bayes method, but much better than other three methods. These results indicate 

that our method can localize cancer voxels very well. Furthermore, as we can see from Fig. 

12(b), along with the area under the ROI-based ROC curve (0.883), our proposed method 

has obvious superiority over other four methods.

In addition, to evaluate the effectiveness of our method on individual patients, we apply two 

different ROC analysis methods to the localization results with five different methods on 26 

patients. Fig. 13(a) shows the AUC values on 26 patients by the proposed method, Naïve 

Bayes, SVM, SVM + RBF, and AdaBoost methods. Most of the AUC values by our method 

are over 0.7, with the highest as 1.0, which indicates that our method works well in cancer 

voxel localization for the same individual patient. From Fig. 13(b), we can observe that most 

of the AUC values under the ROI-based ROC curves by our proposed method are over 0.8, 
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which are better than those achieved by Naïve Bayes, SVM, SVM + RBF and AdaBoost 

methods on 26 patients. These results further validate the effectiveness of our proposed 

method in cancer section localization.

3.6.3. Mean Dice ratio—To evaluate the performance of our method for the cancer 

localization in different zones, we calculate the mean Dice ratios in PZ, CG and TZ, 

respectively. The average Dice ratios are shown in Table 5. It can be observed that our 

method achieves higher average Dice ratios 62.0% in PZ, 56.7% in CG and 78.0% in TZ 

than other four methods.

4. Discussions

In this paper, we have proposed a fully automatic method for prostate cancer localization. In 

previous works, most methods [8,14] involve a semi-automatic identification process, i.e., 

pre-outlining the suspicious cancer ROIs by experts and then classifying the ROIs into 

cancer or non-cancer. Another limitation of most existing methods is that they focused on 

cancer identification only in the PZ, such as [9,10,15]. In MR images, cancers in the PZ have 

richer and discriminative textural imaging signatures compared with those in the CG [17] 

and TZ [18,19], which makes cancer detection in the PZ easier than that in the CG and TZ. 

In contrast, in our study, we localize the cancer regions in the whole prostate. Other existing 

methods [17,26–28,60,61,70,71] mainly focused on classification of the manually delineated 

ROIs as cancer or normal tissue, which is subject to the accuracy of manual experts and also 

labor-intensive and time-consuming.

Another difference in our study is that we currently aim to guide prostate biopsy through the 

cancer localization method. Using our localized cancer regions, the clear shooting path to 

the cancer region could be designed and also the accuracy of biopsy could be improved 

significantly. Additionally, our method can also be used in other applications, such as focal 

therapy planning, triage and follow-up of patients with active surveillance, and decision 

making in treatment selection.

Compared with the works of other researchers, such as [6], there are two limitations in our 

study: (1) the number of subjects is limited. In [6], totally 165 patients with cancer were 

included. In our study, only 26 patients were validated. To overcome this limitation, in our 

experiments, we detected over 100 thousand samples from totally 26 subjects and used voxel 

level classification method. (2) For each prostate image in our study, cancer ROIs are 

outlined only on 1–3 discontinuous slices. For some special cancer regions, such as with low 

Gleason scores, the number of such regions is small and the extracted appearance 

information is relatively little for localizing or discriminating them from the surrounding 

normal tissues. This actually causes some cancer ROIs not accurately localized by our 

method.

In fact, our method can also be extended to other cancer/tumor localization or identification 

with some adjustment of parameters. For example, we have applied our method to high-

grade brain tumor localization. We use 20 subjects from the BRATS 2013 [72] off-site 

dataset, where each subject has four modality images, including Flair, T2, T1c and T1 MR 
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images. All of these subjects are annotated by 4 doctors. We set the number of tree as 10; the 

maximum depth of tree as 100; the number of randomized Haar-like features as 5000; and 

the patch size as 31 × 31 × 31. We use the Dice ratio to evaluate our method, and obtain the 

mean Dice ratio of 0.768. The best result is 0.802. It can be seen that our method also 

achieves a reasonable result on brain tumor localization, which can be further improved in 

the future.

5. Conclusion

We have proposed a novel framework to localize prostate cancer regions in the in vivo MR 

images. Our proposed method can directly localize cancer regions from the entire images. 

Specially, we employ random forests and auto-context model to effectively integrate features 

from multi-parametric MRI and also the iteratively-estimated probability maps for cancer 

localization. Experimental results on 26 real patient data show that our method can 

accurately localize cancer regions, which will be useful for potentially guiding the needle 

biopsy, targeting the tumor in focal therapy planning, triage and follow-up of patients with 

active surveillance, and decision making in treatment selection. In our future work, we will 

further validate our proposed method on more patient subjects.
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Fig. 1. 
T2, DWI, and dADC images are used for cancer localization. In the 2nd row, the prostate 

boundary and cancer region are indicated by the yellow contour and red contour, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of the article.)
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Fig. 2. 
Flowchart of the training procedure for our proposed method with multi-source images, i.e., 

T2, DWI and dADC MR images, along with cancer probability maps. The appearance 

features from multi-parametric MR images are used for training the first classifier, and then 

both appearance features and the context features from probability maps are employed for 

training the subsequent classifiers.
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Fig. 3. 
Three typical examples, showing the performances of applying the proposed method to 

cancer localization in (a) PZ, (b) CG, and (c) TZ. We use the trained classifier from multi-

parametric MRIs in the first iteration to obtain the initial tissue probability maps. Then, in 

the later iterations, the tissue probability maps resulted from previous iteration are also fed 

into the next classifier for refinement.
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Fig. 4. 
Computation of Haar-like features. The red rectangle indicates the patch centered at voxel x. 

Haar-like features are computed as the local mean intensity of any randomly displaced 

cubical region R1, or the mean intensity difference over any two randomly displaced, 

asymmetric cubical regions (R1 and R2) within the image patch R. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of the 

article.)
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Fig. 5. 
Schematic diagram of the conventional prostate division (i.e., 6-section division and 12-

section division) and our section division.
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Fig. 6. 
Different section division methods for a typical prostate slice. Here, the prostate is divided 

by pink dashed lines. The red contour indicates the manual segmentation of the cancer ROI, 

and yellow contour represents the prostate boundary. The slice is divided into 2, 4 and 9 

parts, respectively. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of the article.)
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Fig. 7. 
Influences of (a) the number of classification trees, (b) the maximal depth of trees and (c) 

the minimum sample number in each leaf node.
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Fig. 8. 
Improvement of SBE with classification iterations. Specifically, in the second iteration, the 

SBE is improved greatly, and, after a few iterations, it tends to be stable at around 87%.
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Fig. 9. 
Two examples of cancer section localization by our method. Prostate is divided by pink 

dashed lines. Yellow contour indicates the prostate boundary. Red contours indicate the 

manual delineations, and blue contours indicate the localization results with our method. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of the article.)
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Fig. 10. 
The SBE values obtained by using different combinations of multi-parametric MRI. The 

result by combining all T2, DWI and dADC images is the best, compared to other six 

combinations.
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Fig. 11. 
Comparison of cancer localization results by Naïve Bayes, SVM, SVM + RBF, AdaBoost, 

and the proposed method, on a typical prostate slice also as shown in Fig. 6. The yellow 

contour indicates the prostate region. The red contour indicates manual segmentation, along 

with the automated segmentation results by Naïve Bayes, SVM, SVM + RBF, AdaBoost, 

and our proposed method indicated by the orange, brown, cyan, green, and blue contours, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of the article.)
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Fig. 12. 
(a) Common ROC curves; (b) ROI-based ROC curves. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 13. 
(a) Comparison of AUC values among the proposed method, Naïve Bayes, SVM, SVM + 

RBF, and AdaBoost methods on 26 patients. Most of AUC values are over 0.7 and the 

highest is 1.0 by our proposed method. (b) Comparison of AUC values under the ROI-based 

ROC curves by the proposed method, Naïve Bayes, SVM, SVM + RBF, and AdaBoost on 

26 patients. Most AUC values by our proposed method are over 0.8. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of the 

article.)
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Table 3

SBE, sensitivity and specificity of our cancer section localization with respect to different number of 

iterations.

Iteration SBE Sensitivity Specificity

1 (first cancer probability map) 0.844 0.941 0.813

2 0.866 0.928 0.841

3 0.865 0.915 0.841

4 0.867 0.915 0.846

5 0.867 0.915 0.846

6 0.867 0.915 0.846

7 0.869 0.909 0.851

8 0.868 0.896 0.851

9 0.871 0.915 0.851

10 0.871 0.915 0.851
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Table 4

SBE, sensitivity and specificity of cancer section localization with five different methods on 26 subjects.

Method SBE Sensitivity Specificity

Naïve Bayes 0.685 0.737 0.659

SVM 0.714 0.726 0.710

SVM + RBF 0.799 0.661 0.838

AdaBoost 0.680 0.946 0.605

Proposed 0.871 0.915 0.851

The number in “bold” font indicates the best result achieved by different methods in terms of SBE, Sensitivities, and Specificity.
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