52 research outputs found

    RedLabRA; a Spanish Network of Microbiology Laboratories for the Surveillance of Antibiotic Resistant Microorganisms

    Get PDF
    Factor de impacto: 1,553 Q4There is an urgent need to control the clinical and public health impact that antibiotic resistance (AR) causes worldwide. Any measure for its control must be based on an up-to-date and comprehensive knowledge of the situation. However, it is difficult to determine the current dimension of AR because a large part of the available information is based on heterogeneous, insufficiently unified and retrospective data. The integration of genomic information in the surveillance of AR is another important factor for improvement. The Spanish Network of Laboratories for the Surveillance of Resistant Microorganisms (RedLabRA) is a structured network of interconnected microbiology laboratories developed within the Spanish National Plan against Antibiotic Resistance. Its main objective is to support the diagnosis of resistance to antibiotics, integrating molecular characterization in the surveillance.S

    Evolution of carbapenemase-producing Enterobacteriaceae at the global and national level : What should be expected in the future?

    Get PDF
    In recent years, Enterobacteriaceae isolates have increased their potential to become highly drug resistant by acquiring resistance to carbapenems, primarily due to the production of acquired carbapenemases. The carbapenemases detected in Enterobacteriaceae are largely of the KPC, VIM, NDM, IMP and OXA-48 types. Although the epidemiological origin and geographic distribution of carbapenemases are clearly different, they all first appeared in the late 20th Century. Only a decade later, these enzymes have already become established and have expanded globally. An important epidemiological change has occurred in Spain in recent years, characterized by a rapid increase in the number of cases of carbapenemase-producing Enterobacteriaceae (CPE), causing both nosocomial outbreaks and single infections. The impact of CPE in Spain is primarily due to OXA-48-producing and VIM-1-producing Klebsiella pneumoniae isolates, although other species such as Escherichia coli and Enterobacter cloacae are also increasing. The emergence of CPE as a cause of community-onset infections is a matter of great concern. Taking into account recent experience, and considering the fact that increasing numbers of patients are becoming infected by CPE and reservoirs of carbapenemases are growing globally, the trend of the CPE epidemic points toward a rise in its incidence. To prevent a massive CPE pandemic, a well-coordinated response from all health professionals and national and supranational authorities is clearly needed

    Carbapenemase-Producing Klebsiella pneumoniae From Transplanted Patients in Brazil: Phylogeny, Resistome, Virulome and Mobile Genetic Elements Harboring blaKPC-2 or blaNDM-1.

    Get PDF
    Carbapenemase-producing Klebsiella pneumoniae (CP-Kp) is a major cause of infections in transplanted patients and has been associated with high mortality rates in this group. There is a lack of information about the Brazilian structure population of CP-Kp isolated from transplanted patients. By whole-genome sequencing (WGS), we analyzed phylogeny, resistome, virulome of CP-Kp isolates, and the structure of plasmids encoding blaKPC-2 and blaNDM-1 genes. One K. pneumoniae isolated from each selected transplanted patient colonized or infected by CP-Kp over a 16-month period in a hospital complex in Porto Alegre (Brazil) was submitted for WGS. The total number of strains sequenced was 80. The hospital complex in Porto Alegre comprised seven different hospitals. High-resolution SNP typing, core genome multilocus sequence typing (cgMLST), resistance and virulence genes inference, and plasmid reconstruction were performed in 80 CP-Kp. The mortality rate of CP-Kp colonized or infected transplanted inpatients was 21.3% (17/80). Four CP-Kp epidemic clones were described: ST11/KPC-2, ST16/KPC-2, and ST15/NDM-1, all responsible for interhospital outbreaks; and ST437/KPC-2 affecting a single hospital. The average number of acquired resistance and virulence genes was 9 (range = 2-14) and 27 (range = 6-36), respectively. Two plasmids carrying the blaKPC-2 were constructed and belonged to IncN and IncM types. Additionally, an IncFIB plasmid carrying the blaNDM-1 was described. We detected intrahospital and interhospital spread of mobile structures and international K. pneumoniae clones as ST11, ST16, and ST15 among transplanted patients, which carry a significant range of acquired resistance and virulence genes and keep spreading across the world.This work was supported by Plan Nacional de I+D+i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, and Spanish Network for Research in Infectious Diseases (REIPI RD16CIII/0004/0002), and co-financed by the European Regional Development Fund ERDF “A way to achieve Europe,” Operative Program Intelligent Growth 2014–2020. This work was also supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001.S

    Inhibitor-resistant TEM- and OXA-1-producing Escherichia coli isolates resistant to amoxicillin-clavulanate are more clonal and possess lower virulence gene content than susceptible clinical isolates

    Get PDF
    In a previous prospective multicenter study in Spain, we found that OXA-1 and inhibitor-resistant TEM (IRT) β-lactamases constitute the most common plasmid-borne mechanisms of genuine amoxicillin-clavulanate (AMC) resistance in Escherichia coli. In the present study, we investigated the population structure and virulence traits of clinical AMC-resistant E. coli strains expressing OXA-1 or IRT and compared these traits to those in a control group of clinical AMC-susceptible E. coli isolates. All OXA-1-producing (n = 67) and IRT-producing (n = 45) isolates were matched by geographical and temporal origin to the AMC-susceptible control set (n = 56). We performed multilocus sequence typing and phylogenetic group characterization for each isolate and then studied the isolates for the presence of 49 virulence factors (VFs) by PCR and sequencing. The most prevalent clone detected was distinct for each group: group C isolates of sequence type (ST) 88 (C/ST88) were the most common in OXA-1 producers, B2/ST131 isolates were the most common in IRT producers, and B2/ST73 isolates were the most common in AMC-susceptible isolates. The median numbers of isolates per ST were 3.72 in OXA-1 producers, 2.04 in IRT producers, and 1.69 in AMC-susceptible isolates; the proportions of STs represented by one unique isolate in each group were 19.4%, 31.1%, and 48.2%, respectively. The sum of all VFs detected, calculated as a virulence score, was significantly higher in AMC-susceptible isolates than OXA-1 and IRT producers (means, 12.5 versus 8.3 and 8.2, respectively). Our findings suggest that IRT- and OXA-1-producing E. coli isolates resistant to AMC have a different and less diverse population structure than AMC-susceptible clinical E. coli isolates. The AMC-susceptible population also contains more VFs than AMC-resistant isolates.This study was supported by the Plan Nacional de I+D+i 2008-2011 and the Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD12/0015). The study was cofinanced by the European Development Regional Fund (ERDF; A way to achieve Europe) and the Fondo de Investigación Sanitaria (grant PI09/0917).S

    Adaptation of clinical isolates of Klebsiella pneumoniae to the combination of niclosamide with the efflux pump inhibitor phenyl-arginine-β-naphthylamide (PaβN): co-resistance to antimicrobials

    Get PDF
    Objectives: To search for new means of combatting carbapenemase-producing strains of Klebsiella pneumoniae by repurposing the anti-helminth drug niclosamide as an antimicrobial agent and combining it with the efflux pump inhibitor (EPI) phenyl-arginine-β-naphthylamide (PaβN). Methods: Niclosamide and PaβN MICs were determined for six clinical K. pneumoniae isolates harbouring different carbapenemases by broth microdilution and chequerboard assays. Time-kill curves in the presence of each drug alone and in combination were conducted. The viability of bacterial cells in the presence of repetitive exposures at 8 h to the treatment at the same concentration of niclosamide and/or PaβN (adapted isolates) was determined. The acrAB-tolC genes and their regulators were sequenced and quantitative RT-PCR was performed to assess whether the acrA gene was overexpressed in adapted isolates compared with non-adapted isolates. Finally, the MICs of several antimicrobials were determined for the adapted isolates. Results: Niclosamide and PaβN had synergistic effects on the six isolates in vitro, but adaptation appeared when the treatment was applied to the medium every 8 h, with an increase of 6- to 12-fold in the MIC of PaβN. Sequencing revealed different mutations in the regulators of the tripartite AcrAB-TolC efflux pump (ramR and acrR) that may be responsible for the overexpression of the efflux pump and the adaptation to this combination. Co-resistance to different antimicrobials confirmed the overexpression of the AcrAB-TolC efflux pump. Conclusions: Despite the synergistic effect that preliminary in vitro stages may suggest, the combinations of drugs and EPI may generate adapted phenotypes associated with antimicrobial resistance that must be taken into consideration

    The Role of PemIK (PemK/PemI) Type II TA System from Klebsiella pneumoniae Clinical Strains in Lytic Phage Infection

    Get PDF
    [Abstract] Since their discovery, toxin-antitoxin (TA) systems have captivated the attention of many scientists. Recent studies have demonstrated that TA systems play a key role in phage inhibition. The aim of the present study was to investigate the role of the PemIK (PemK/PemI) type II TA system in phage inhibition by its intrinsic expression in clinical strains of Klebsiella pneumoniae carrying the lncL plasmid, which harbours the carbapenemase OXA-48 and the PemK/PemI TA system. Furthermore, induced expression of the system in an IPTG-inducible plasmid in a reference strain of K. pneumoniae ATCC10031 was also studied. The results showed that induced expression of the whole TA system did not inhibit phage infection, whereas overexpression of the pemK toxin prevented early infection. To investigate the molecular mechanism involved in the PemK toxin-mediated inhibition of phage infection, assays measuring metabolic activity and viability were performed, revealing that overexpression of the PemK toxin led to dormancy of the bacteria. Thus, we demonstrate that the PemK/PemI TA system plays a role in phage infection and that the action of the free toxin induces a dormant state in the cells, resulting in inhibition of phage infections.This study was funded by grant PI19/00878 awarded to M. Tomás within the State Plan for R+D+I 2013-2016 (National Plan for Scientific Research, Technological Development and Innovation 2008-2011) and co-financed by the ISCIII-Deputy General Directorate for Evaluation and Promotion of Research—European Regional Development Fund "A way of Making Europe" and Instituto de Salud Carlos III FEDER, Spanish Network for the Research in Infectious Diseases (REIPI, RD16/0016/0001, RD16/0016/0006 and RD16/CIII/0004/0002) and by the Study Group on Mechanisms of Action and Resistance to Antimicrobials, GEMARA (SEIMC, http://www.seimc.org/). M. Tomás was financially supported by the Miguel Servet Research Programme (SERGAS and ISCIII). I. Bleriot was financially supported by pFIS program (ISCIII, FI20/00302). O. Pacios and M. López was financially supported by a grant IN606A-2020/035 and IN606B-2018/008, respectively (GAIN, Xunta de Galicia) and M. Gonzalez-Bardanca was financially supported by the Rio Hortega program (ISCIII, CM20/00198)Xunta de Galicia; IN606A-2020/035Xunta de Galicia; IN606B-2018/00

    Phenotypic and molecular characterization of IMP-producing Enterobacterales in Spain: Predominance of IMP-8 in Klebsiella pneumoniae and IMP-22 in Enterobacter roggenkampii

    Get PDF
    ObjectivesLittle is known about IMP-producing Enterobacterales (IMP-Ent) in Europe. We analyzed at genomic and phenotypic level IMP-Ent isolates circulating in Spain in a 9-year period.Materials and methodsIMP-Ent isolates submitted to our reference laboratory were included. Antibiotic susceptibility was performed using microdilution method (EUCAST), and IMP-carbapenemase activity was measured with carbapenemase inhibitors, the β-CARBA method, the modified Hodge test (MHT), and the modified carbapenemase inhibition method (mCIM). All isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis.ResultsFifty IMP-Ent isolates, collected from 19 hospitals in 13 Spanish provinces, were detected: Klebsiella pneumoniae (IMP-Kpn) (24; 48%), Enterobacter roggenkampii (13; 26%), Enterobacter hormaechei (8, 16%), Klebsiella oxytoca (two; 4%), Enterobacter asburiae (one, 2%), Serratia marcescens (one; 2%) and Escherichia coli (one; 2%). All isolates were positive by the MHT and β-CARBA tests; 48 (96%) were mCIM positive; 12 (24%) and 26 (52%) displayed positive inhibition with dipicolinic (meropenem) and EDTA (ertapenem), respectively. Five IMP-carbapenemase types were identified: IMP-8 (22; 44%), IMP-22 (17; 34%), IMP-13 (7; 14%), IMP-28 (two; 4%), and IMP-15 (two; 4%), predominating IMP-8 in K. pneumoniae and IMP-22 in E. roggenkampii. IMP-28 was exclusively identified in K. oxytoca and IMP-15 in E. hormaechei. Predominant STs were ST405 (29.2%), ST15 (25%) and ST464 (20.8%) in IMP-Kpn; ST96 (100%) in E. roggenkampii and ST182 (62.5%) in E. hormachei. Colistin and amikacin were the most active non-carbapenem antibiotics against IMP-Ent.ConclusionIMP-Ent isolates remain infrequent in Spain, although in recent years have been circulating causing nosocomial outbreaks, being IMP-8-producing K. pneumoniae and IMP-22-producing E. roggenkampii the most frequently detected in this study. Inhibition with EDTA or dipicolinic acid presented false negative results in some IMP-producing strains. Active microbiological and molecular surveillance is essential for a better comprehension and control of IMP-Ent dissemination

    ENE-COVID nationwide serosurvey served to characterize asymptomatic infections and to develop a symptom-based risk score to predict COVID-19

    Get PDF
    Objectives: To characterize asymptomatic SARS-CoV-2 infections and develop a symptom-based risk score useful in primary healthcare. Study design and setting: Sixty-one thousand ninty-two community-dwelling participants in a nationwide population-based serosurvey completed a questionnaire on COVID-19 symptoms and received an immunoassay for SARS-CoV-2 IgG antibodies between April 27 and June 22, 2020. Standardized prevalence ratios for asymptomatic infection were estimated across participant characteristics. We constructed a symptom-based risk score and evaluated its ability to predict SARS-CoV-2 infection. Results: Of all, 28.7% of infections were asymptomatic (95% CI 26.1-31.4%). Standardized asymptomatic prevalence ratios were 1.19 (1.02-1.40) for men vs. women, 1.82 (1.33-2.50) and 1.45 (0.96-2.18) for individuals <20 and ≥80 years vs. those aged 40-59, 1.27 (1.03-1.55) for smokers vs. nonsmokers, and 1.91 (1.59-2.29) for individuals without vs. with case contact. In symptomatic population, a symptom-based score (weights: severe tiredness = 1; absence of sore throat = 1; fever = 2; anosmia/ageusia = 5) reached standardized seroprevalence ratio of 8.71 (7.37-10.3), discrimination index of 0.79 (0.77-0.81), and sensitivity and specificity of 71.4% (68.1-74.4%) and 74.2% (73.1-75.2%) for a score ≥3. Conclusion: The presence of anosmia/ageusia, fever with severe tiredness, or fever without sore throat should serve to suspect COVID-19 in areas with active viral circulation. The proportion of asymptomatics in children and adolescents challenges infection control.The ENE-COVID study was supported by the Spanish Ministry of Health, the Institute of Health Carlos III, and the Spanish National Health System. The funders were in- volved in the study logistics, but they had no role in study design or in the collection, analysis, interpretation of data, or the decision to submit the article for publicationS

    Recommendations of the Spanish Antibiogram Committee (COESANT) for selecting antimicrobial agents and concentrations for in vitro susceptibility studies using automated systems

    Get PDF
    Automated antimicrobial susceptibility testing devices are widely implemented in clinical microbiology laboratories in Spain, mainly using EUCAST (European Committee on Antimicrobial Susceptibility Testing) breakpoints. In 2007, a group of experts published recommendations for including antimicrobial agents and selecting concentrations in these systems. Under the patronage of the Spanish Antibiogram Committee (Comité Español del Antibiograma, COESANT) and the Study Group on Mechanisms of Action and Resistance to Antimicrobial Agents (GEMARA) from the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), and aligned with the Spanish National Plan against Antimicrobial Resistance (PRAN), a group of experts have updated this document. The main modifications from the previous version comprise the inclusion of new antimicrobial agents, adaptation of the ranges of concentrations to cover the EUCAST breakpoints and epidemiological cut-off values (ECOFFs), and the inference of new resistance mechanisms. This proposal should be considered by different manufacturers and users when designing new panels or cards. In addition, recommendations for selective reporting are also included. With this approach, the implementation of EUCAST breakpoints will be easier, increasing the quality of antimicrobial susceptibility testing data and their microbiological interpretation. It will also benefit epidemiological surveillance studies as well as the clinical use of antimicrobials aligned with antimicrobial stewardship programs.Los sistemas automáticos utilizados en el estudio de la sensibilidad a los antimicrobianos están introducidos en la mayoría de los laboratorios de Microbiología Clínica en España, utilizando principalmente los puntos de corte del European Committee on Antimicrobial Susceptibility Testing (EUCAST). En 2007, un grupo de expertos publicó unas recomendaciones para incluir antimicrobianos y seleccionar concentraciones en estos sistemas. Bajo el auspicio del Comité Español del Antibiograma (COESANT) y del Grupo de Estudio de los Mecanismos de Acción y Resistencia a los Antimicrobianos (GEMARA) de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) y alineado con el Plan Nacional frente a la Resistencia a los Antibióticos (PRAN), un grupo de expertos ha actualizado dicho documento. Las principales modificaciones realizadas sobre la versión anterior comprenden la inclusión de nuevos agentes antimicrobianos, la adaptación de los rangos de concentraciones para cubrir los puntos de corte clínicos y los puntos de corte epidemiológicos (ECOFF) definidos por el EUCAST, y para la inferencia de nuevos mecanismos de resistencia. Esta propuesta debería ser considerada por los diferentes fabricantes y los usuarios cuando se diseñen nuevos paneles o tarjetas. Además, se incluyen recomendaciones para realizar informes selectivos. Con este enfoque, la implementación de los puntos de corte del EUCAST será más fácil, aumentando la calidad de los datos del antibiograma y su interpretación microbiológica. También será de utilidad para los estudios de vigilancia epidemiológica, así como para el uso clínico de los antimicrobianos, de acuerdo con los programas de optimización de uso de antimicrobianos (PROA)
    corecore