59 research outputs found

    Enhanced follicular delivery of finasteride to human scalp skin using heat and chemical penetration enhancers

    Get PDF
    © The Author(s) 2020. This article is an open access publication. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Purpose The aim of this work was to evaluate whether improved topical delivery of finasteride, focussed to the hair follicles of human scalp skin could be achieved with application of short durations of heat and use of specific chemical penetration enhancers. Methods Franz cell experiments with human scalp skin were performed with a range of chemical penetration enhancers at 32°C and 45°C to simulate normal and heated conditions. Selected chemical penetration enhancers were taken forward for finite dose Franz cell studies which examined the effect of heat produced by a prototype external heating system that supplied either 20 or 30 min of additional heat over both a 24 h and a 1 h time period. Results Short durations of externally applied heat significantly increased finasteride penetration into human scalp skin after 24 h. Analysis of drug distribution in the skin after 1 h and 24 h indicated that both heat and chemical penetration enhancer selection influenced drug delivery to the hair follicles. Conclusion The use of short durations of heat in combination with specific chemical penetration enhancers was able to increase the delivery of finasteride to human scalp skin and provide focussed drug delivery to the hair follicles.Peer reviewe

    A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy

    Get PDF
    Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo

    Sterol Intermediates of Cholesterol Biosynthesis Inhibit Hair Growth and Trigger an Innate Immune Response in Cicatricial Alopecia

    Get PDF
    Primary cicatricial alopecia (PCA) is a group of inflammatory hair disorders that cause scarring and permanent hair loss. Previous studies have implicated PPARγ, a transcription factor that integrates lipogenic and inflammatory signals, in the pathogenesis of PCA. However, it is unknown what triggers the inflammatory response in these disorders, whether the inflammation is a primary or secondary event in disease pathogenesis, and whether the inflammatory reaction reflects an autoimmune process. In this paper, we show that the cholesterol biosynthetic pathway is impaired in the skin and hair follicles of PCA patients. Treatment of hair follicle cells with BM15766, a cholesterol biosynthesis inhibitor, or 7-dehydrocholesterol (7-DHC), a sterol precursor, stimulates the expression of pro-inflammatory chemokine genes. Painting of mouse skin with 7-DHC or BM15766 inhibits hair growth, causes follicular plugging and induces the infiltration of inflammatory cells into the interfollicular dermis. Our results demonstrate that cholesterologenic changes within hair follicle cells trigger an innate immune response that is associated with the induction of toll-like receptor (TLR) and interferon (IFN) gene expression, and the recruitment of macrophages that surround the hair follicles and initiate their destruction. These findings reveal a previously unsuspected role for cholesterol precursors in PCA pathogenesis and identify a novel link between sterols and inflammation that may prove transformative in the diagnosis and treatment of these disorders

    In Vivo Methods for the Assessment of Topical Drug Bioavailability

    Get PDF
    This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described

    Preferential Amplification of CD8 Effector-T Cells after Transcutaneous Application of an Inactivated Influenza Vaccine: A Randomized Phase I Trial

    Get PDF
    Background: Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. Methods and Findings: We chose the inactivated influenza vaccine – a conventional licensed tetanus/influenza (TETAGRIP®) vaccine – to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. Conclusions: This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
    corecore