3,371 research outputs found

    Non-collinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni(001)

    Get PDF
    Magnetic nanostructures on non-magnetic or magnetic substrates have attracted strong attention due to the development of new experimental methods with atomic resolution. Motivated by this progress we have extended the full-potential Korringa-Kohn-Rostoker (KKR) Green function method to treat non-collinear magnetic nanostructures on surfaces. We focus on magnetic 3d impurity nanoclusters, sitting as adatoms on or in the first surface layer on Ni(001), and investigate the size and orientation of the local moments and moreover the stabilization of non-collinear magnetic solutions. While clusters of Fe, Co, Ni atoms are magnetically collinear, non-collinear magnetic coupling is expected for Cr and Mn clusters on surfaces of elemental ferromagnets. The origin of frustration is the competition of the antiferromagnetic exchange coupling among the Cr or Mn atoms with the antiferromagnetic (for Cr) or ferromagnetic (for Mn) exchange coupling between the impurities and the substrate. We find that Cr and Mn first-neighbouring dimers and a Mn trimer on Ni(001) show non-collinear behavior nearly degenerate with the most stable collinear configuration. Increasing the distance between the dimer atoms leads to a collinear behavior, similar to the one of the single impurities. Finally, we compare some of the non-collinear {\it ab-initio} results to those obtained within a classical Heisenberg model, where the exchange constants are fitted to total energies of the collinear states; the agreement is surprisingly good.Comment: 11 page

    Lehmann rotation of cholesteric droplets subjected to a temperature gradient: role of the concentration of chiral molecules

    Get PDF
    International audienceWe present a systematic study of the Lehmann rotation of cholesteric droplets subjected to a temperature gradient when the concentration of chiral molecules is changed. The liquid crystal chosen is an eutectic mixture of 8CB and 8OCB doped with a small amount of the chiral molecule R811. The angular velocity of the droplets strongly depend on their size and on the concentration of chiral molecules. The Lehmann coefficient is estimated by using three different methods. Our results are consistent with a Lehmann coefficient proportional to the concentration of chiral molecules. We additionally show the existence of a critical size of the droplets below which they change texture and stop rotating

    Undulation instabilities in the meniscus of smectic membranes

    Get PDF
    Using optical microscopy, phase shifting interferometry and atomic force microscopy, we demonstrate the existence of undulated structures in the meniscus of ferroelectric smectic-C* films. The meniscus is characterized by a periodic undulation of the smectic-air interface, which manifests itself in a striped pattern. The instability disappears in the untilted smectic-A phase. The modulation amplitude and wavelength both depend on meniscus thickness. We study the temperature evolution of the structure and propose a simple model that accounts for the observed undulations.Comment: Submitted to PR

    Relationship between hippocampal structure and memory function in elderly humans

    Get PDF
    With progressing age, the ability to recollect personal events declines, whereas familiarity-based memory remains relatively intact. It has been hypothesized that age-related hippocampal atrophy may contribute to this pattern because of its critical role for recollection in younger humans and after acute injury. Here, we show that hippocampal volume loss in healthy older persons correlates with gray matter loss (estimated with voxel-based morphometry) of the entire limbic system and shows no correlation with an electrophysiological (event-related potential [ERP]) index of recollection. Instead, it covaries with more substantial and less specific electrophysiological changes of stimulus processing. Age-related changes in another complementary structural measure, hippocampal diffusion, on the other hand, seemed to be more regionally selective and showed the expected correlation with the ERP index of recollection. Thus, hippocampal atrophy in older persons accompanies limbic atrophy, and its functional impact on memory is more fundamental than merely affecting recollection

    Theory and computation of directional nematic phase ordering

    Get PDF
    A computational study of morphological instabilities of a two-dimensional nematic front under directional growth was performed using a Landau-de Gennes type quadrupolar tensor order parameter model for the first-order isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). A previously derived energy balance, taking anisotropy into account, was utilized to account for latent heat and an imposed morphological gradient in the time-dependent model. Simulations were performed using an initially homeotropic isotropic/nematic interface. Thermal instabilities in both the linear and non-linear regimes were observed and compared to past experimental and theoretical observations. A sharp-interface model for the study of linear morphological instabilities, taking into account additional complexity resulting from liquid crystalline order, was derived. Results from the sharp-interface model were compared to those from full two-dimensional simulation identifying the specific limitations of simplified sharp-interface models for this liquid crystal system. In the nonlinear regime, secondary instabilities were observed to result in the formation of defects, interfacial heterogeneities, and bulk texture dynamics.Comment: first revisio

    Elasticity of smectic liquid crystals with focal conic domains

    Full text link
    We study the elastic properties of thermotropic smectic liquid crystals with focal conic domains (FCDs). After the application of the controlled preshear at different temperatures, we independently measured the shear modulus G' and the FCD size L. We find out that these quantities are related by the scaling relation G' ~ \gamma_{eff}/L where \gamma_{eff} is the effective surface tension of the FCDs. The experimentally obtained value of \gamma_{\rm eff} shows the same scaling as the effective surface tension of the layered systems \sqrt{KB} where K and B are the bending modulus and the layer compression modulus, respectively. The similarity of this scaling relation to that of the surfactant onion phase suggests an universal rheological behavior of the layered systems with defects.Comment: 14 pages, 7 figures, accepted for publication in JPC

    Effect of chirality on the compression of 2-(2-Oxo-1-pyrrolidinyl)butyramide : a tale of two crystals

    Get PDF
    Understanding polymorphism in chiral systems for drug manufacturing is essential to avoid undesired therapeutic effects. Generally, polymorphism is studied through changes in temperature and solution concentration. A less common approach is the application of pressure. The goal of this work is to investigate the effect of pressure on levetiracetam (pure enantiomer) and etiracetam (racemic compound). Anisotropic compressions of levetiracetam and etiracetam are observed to 5.26 and 6.29 GPa, respectively. The most compressible direction for both was identified to be perpendicular to the layers of the structure. Raman spectroscopy and an analysis of intermolecular interactions suggest subtle phase transitions in levetiracetam (∼2 GPa) and etiracetam (∼1.5 GPa). The stability of etiracetam increases with respect to levetiracetam on compression; hence, the chiral resolution of this system is unfavorable using pressure. This work contributes to the ongoing efforts in understanding the stability of chiral systems

    Effects of Midrotation Intensive Silviculture on Forest Soils in East Texas: First-Year Results

    Get PDF
    Intensive forest management is becoming increasingly common in east Texas. Included in intensive management are such practices as mid-rotation fertilization, prescribed fire, and herbicide application. There is insufficient information about the effects of these treatments on soil physical, chemical, and biological properties when applied at mid-rotation. The objectives of this research are to evaluate the effects of these treatments on soil physical properties including organic matter content and bulk density; chemical properties including soil nitrogen and phosphorus; and on populations of resident earthworms. Five replications were installed in each of two loblolly pine (Pinus taeda L.) plantations aged 15 and 17. Both were thinned in 1998. Accord SP and Chopper emulsion were ground applied in the fall of 1999. The prescribed burn treatment occurred the following spring. Fertilizer was applied one to two weeks after completion of the burn to supply 224 kilograms per hectare of N and 28 kilograms per hectare of P. First-year results are presented

    Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition

    Full text link
    An extension to a high-order model for the direct isotropic/smectic-A liquid crystalline phase transition was derived to take into account thermal effects including anisotropic thermal diffusion and latent heat of phase-ordering. Multi-scale multi-transport simulations of the non-isothermal model were compared to isothermal simulation, showing that the presented model extension corrects the standard Landau-de Gennes prediction from constant growth to diffusion-limited growth, under shallow quench/undercooling conditions. Non-isothermal simulations, where meta-stable nematic pre-ordering precedes smectic-A growth, were also conducted and novel non-monotonic phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure

    Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface

    Full text link
    We present a method for characterizing the propagation of the magnetic flux in an artificially drilled bulk high-temperature superconductor (HTS) during a pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical sample, the magnetic flux density is measured simultaneously in 16 holes by means of microcoils that are placed across the median plane, i.e. at an equal distance from the top and bottom surfaces, and close to the surface of the sample. We discuss the time evolution of the magnetic flux density in the holes during a pulse and measure the time taken by the external magnetic flux to reach each hole. Our data show that the flux front moves faster in the median plane than on the surface when penetrating the sample edge; it then proceeds faster along the surface than in the bulk as it penetrates the sample further. Once the pulse is over, the trapped flux density inside the central hole is found to be about twice as large in the median plane than on the surface. This ratio is confirmed by modelling
    • …
    corecore