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Magnetic nanostructures on nonmagnetic or magnetic substrates have attracted strong attention due to the
development of interesting experimental methods with atomic resolution. Motivated by this progress we have
extended the full-potential Korringa-Kohn-Rostoker Green-function method to treat noncollinear magnetic
nanostructures on surfaces. We focus on magnetic 3d impurity nanoclusters, sitting as adatoms on or in the first
surface layer on Ni�001�, and investigate the size and orientation of the local moments and, moreover, the
stabilization of noncollinear magnetic solutions. While clusters of Fe, Co, Ni atoms are magnetically collinear,
noncollinear magnetic coupling is expected for Cr and Mn clusters on surfaces of elemental ferromagnets. The
origin of frustration is the competition of the antiferromagnetic exchange coupling among the Cr or Mn atoms
with the antiferromagnetic �for Cr� or ferromagnetic �for Mn� exchange coupling between the impurities and
the substrate. We find that Cr and Mn first-neighboring dimers and a Mn trimer on Ni�001� show noncollinear
behavior nearly degenerate with the most stable collinear configuration. Increasing the distance between the
dimer atoms leads to a collinear behavior, similar to the one of the single impurities. Finally, we compare some
of the noncollinear ab initio results to those obtained within a classical Heisenberg model, where the exchange
constants are fitted to total energies of the collinear states; the agreement is surprisingly good.
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I. INTRODUCTION

Theoretically, extensive work is carried out in the area of
complex noncollinear magnetism, particularly for surface
and bulk systems. A lot of interesting physics would be
missed if only collinear magnetic structures were considered.
In fact, magnetic nanostructures on magnetic or nonmagnetic
substrates are attractive to the scientific community due to
their unusual properties1–4 being of relevance both for theory
as well as for the applications in the magnetoelectronics de-
vices.

One of these properties is the noncollinear magnetic order
occurring for geometrically frustrated antiferromagnets, e.g.,
on a triangular lattice, in disordered systems, exchange bias
systems, and molecular magnets, or for systems which ex-
hibit either competing exchange interactions, or between ex-
change and spin-orbit interactions. A simple model for frus-
tration is the following: Starting with an antiferromagnetic
�AF� Cr dimer, the addition of a third Cr atom to form an
equilateral triangle leads to a frustrated geometry. Each atom
would like to couple antiferromagnetically to both other at-
oms. Since this is impossible, the moments of the three at-
oms rotate until a compromise is found. The ground state is
then noncollinear, characterized by an angle of 120� between
each atom. The same situation will also occur for the AF Cr
dimer, since the interaction of both Cr atoms with the ferro-
magnetic substrate atoms is either ferromagnetic of antifer-
romagnetic. As we will show in this paper, also in this case a
noncollinear structure can result.

The majority of the ab initio methods available for the
treatment of noncollinear magnetism make explicit use of
Bloch’s theorem and are thus restricted to periodic systems
�bulk or films�. Then, even for collinear magnetism, one
needs huge supercells to simulate impurities in a given host

�bulk or film� in order to avoid spurious interactions of the
impurities from adjacent supercells. A few methods have
been developed to treat free clusters, but to our knowledge
no ab initio methods exist for the investigation of noncol-
linear magnetism of clusters in bulk or deposited on surfaces.

First noncollinear calculations by the Korringa-Kohn-
Rostoker �KKR� Green-function method, though not self-
consistent, were already performed in 1985. Oswald et al.5

could show by using the method of constraints that the ex-
change interaction between the moments of Mn and Fe im-
purity pairs in Cu is in good approximation described by the
cos � dependence of the Heisenberg model.

Sandratskii et al.6 and Kübler and co-workers7,8 pioneered
the investigation of noncollinear magnetic structures using
self-consistent density-functional theory. One of the first sys-
tems studied by Sandratskii et al.6 was the spin spiral of bcc
Fe with the KKR method. Later on, �-Fe was a hot topic,
and the appearance of the experimental work of Tsunoda and
co-workers9,10 led to the development of other first-principles
methods able to deal with noncollinear magnetism such as
linear muffin-tin orbital,11 ASW,12 and FLAPW.13–15

Several papers16,17 describe how symmetry simplifies the
calculational effort for the spiral magnetic structures in the
case of perfect periodic systems—this involves the general-
ized Bloch theorem. In ab initio methods, this principle is
used together with the constrained density-functional
theory18,19 giving the opportunity of studying arbitrary mag-
netic configurations where the orientations of the local mo-
ments are constrained to nonequilibrium directions.

Concerning free clusters, few methods are developed. For
example, Oda et al.20 developed a plane-wave pseudopoten-
tial scheme for noncollinear magnetic structures. They ap-
plied it to small Fe clusters for which they found noncol-
linear magnetic structures for Fe5 and linear-shape Fe3. This
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last result was in contradiction with the work of Hobbs et
al.21 who found only a collinear ferromagnetic configuration
using a projector augmented-wave method. Small Cr clusters
were found magnetically noncollinear,20 as shown also by
Kohl and Bertsch22 using a relativistic nonlocal pseudopo-
tential method after optimization of the ionic structure by a
Monte Carlo technique. However, within the generalized gra-
dient approximation �GGA� of density-functional theory,
Hobbs et al.21 find that in many cases the noncollinear states
can be metastable, while the ground-state solutions are col-
linear and arise after geometrical optimization of the free-
standing clusters.

One main result of Oda et al.20 and Hobbs et al.21 con-
cerns the variation of the magnetization density with the po-
sition. The spin direction changes in the interstitial region
between the atoms where the charge and magnetization den-
sities are small, while the magnetization is practically collin-
ear within the atomic spheres. This supports the use of a
single spin direction for each atomic sphere as an approxi-
mation in order to accelerate the computation; this approxi-
mation is followed also here.

The aim of this work is to present a method based on the
full-potential KKR scheme23 which can deal with noncol-
linear magnetism in systems of reduced symmetry. This
method is ideal for treating impurities or small clusters on
surfaces or in bulk. As an application we study small 3d
clusters on the Ni�001� surface where we find complex mag-
netic configurations.

II. NONCOLLINEAR KKR FORMALISM

The KKR method uses multiple-scattering theory in order
to determine the one-electron Green function in a mixed site
and angular-momentum representation. The retarded Green
function is expanded as

G�R� n + r�,R� n� + r��;E� = − i�E�
L

RL
n�r��;E�HL

n�r��;E��nn�

+ �
LL�

RL
n�r�;E�GLL�

nn��E�RL�
n��r��;E� .

�1�

Here, E is the energy and R� n, R� n� refer to the atomic nuclei
positions. By r�� and r�� we denote, respectively, the shorter
and longer of the vectors r� and r�� which define the position

in each Wigner-Seitz cell relative to the position R� n or R� n�.
The wave functions RL

n�r� ;E� and HL
n�r� ;E� are, respectively,

the regular and irregular solutions of the Schrödinger equa-
tion for the potential Vn at site n, being embedded in free
space; L= �l ,m� is a combined index for angular momentum
quantum numbers; l is truncated at a maximum value of lmax.
The first term on the left-hand side of Eq. �1� is the so-called
single-site scattering term, which describes the behavior of
an atom n in free space. All multiple- and back-scattering
information is contained in the second back-scattering term

via the structural Green functions GLL�
nn��E� which are ob-

tained by solving the algebraic Dyson equation:

GLL�
nn��E� = G̊LL�

nn��E� + �
n�,L�L�

G̊LL�
nn��E��tL�L�

n� �E�GL�L�
n�n� �E� .

�2�

Equation �2� follows directly from the usual Dyson equation

of the form G= G̊+ G̊�VG, with �V the perturbation in the

potential and G̊ the reference system Green function. The
summation in Eq. �2� is over all lattice sites n� and angular

momenta L� for which the perturbation �tL�L�
n� �E�= tL�L�

n� �E�

− t̊L�L�
n� �E� between the t matrices of the real and the reference

system is significant �the t matrix gives the scattering ampli-

tude of the atomic potential�. The quantities G̊LL�
nn��E� are the

structural Green functions of the reference system. For the
calculation of a crystal bulk or surface, the reference system
can be free space, or, within the tight-binding KKR
formulation,24 a system of periodically arrayed repulsive po-
tentials. After the host �bulk or surface� Green function is
found, it can be used in a second step as a reference for the
calculation of the Green function of an impurity or a cluster
of impurities embedded in the host.

The algebraic Dyson equation �2� is solved by matrix in-
version, as we will see later on in Eq. �17�. In the case of
spin-dependent electronic structure, spin indexes enter in the
t matrix, the Green functions and in Eq. �2�. Especially in the
case of noncollinear magnetism, these quantities become 2
�2 matrices in spin space, denoted by t and G.

Once the spin-dependent Green function is known, all
physical properties can be derived from it. In particular, the
charge density n�r�� and spin density m� �r�� are given by an
integration of the imaginary part of G up to the Fermi level
EF and a trace over spin indexes s �putting the Green func-
tion in a matrix form in spin space�:

n�r�� = −
1

	
Im Trs�EF

G�r�,r�;E�dE , �3�

m� �r�� = −
1

	
Im Trs�EF

�� G�r�,r�;E�dE . �4�

Here, �� = ��x ,�y ,�z� are the Pauli matrices and Trs means
the trace operation in spin space.

The basic difference between noncollinear and collinear
magnetism is the absence of a natural spin-quantization axis
common to the whole crystal. The density matrix is not any-
more diagonal in spin space as in the case of collinear mag-
netism. Instead, in any fixed frame of reference it has the
form

��r�� = �
↑↑�r�� 
↑↓�r��

↓↑�r�� 
↓↓�r��

� =
1

2
�n�r�� + �� · m� �r��	 . �5�

At any particular point in space, of course, a local frame of
reference can be found in which � is diagonal, but this local
frame can change from point to point.

In order to deal with noncollinear magnetism, we have to
solve the appropriate Dyson equation. First we define the
reference system which is a perfect surface characterized by
collinear magnetism. Although the collinearity of the refer-
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ence system is not a necessary requirement, it serves our
purpose of calculating the electronic structure of the ferro-
magnetic or nonmagnetic surfaces which are used as refer-

ence systems. Thus the host Green functions G̊ and t matri-
ces t̊ are assumed diagonal in spin space. In this way, in the
case of a magnetic host, a global spin frame of reference is

defined. The host G̊ and t̊ are thus of the form

G̊�E� = �G̊↑↑�E� 0

0 G̊↓↓�E�
� ; t̊�E� = � t̊↑↑�E� 0

0 t̊↓↓�E�
� .

�6�

Then the perturbed system is constructed. The impurity at-
oms which might couple magnetically in a noncollinear way
reside on the surface, perturbing the potential at a few neigh-
boring sites �atoms or empty cells representing the potential
in the vacuum�. Within this finite cluster of perturbed sites
the magnetization can be noncollinear leading to the appear-
ance of nondiagonal elements of the t matrix:

t�E� = �t↑↑�E� t↑↓�E�
t↓↑�E� t↓↓�E� � . �7�

The nondiagonal t matrix contains the information on spin-
flip scattering by the atomic potential.

At this stage an approximation enters our method. It is
assumed that, separately for each atom, there exists an intra-
atomic spin-quantization axis common to the whole atomic
cell. This axis is identified with the spatial average of the
magnetization density m� n�r�� in each cell n. This defines the
local spin frame of reference. In this way we neglect the
variation of the spin-quantization axis within the cell during
self-consistency, avoiding the time-consuming numerical so-
lution of the potential of coupled Schrödinger equations of
the two spin channels. Within the local-density approxima-
tion of density-functional theory, the exchange correlation
potential has the same reference frame as the local magneti-
zation m� n�r��. Then for each atom we have a potential which
is collinear in the local frame, and the solutions of the
Schrödinger equation, RnLs

loc �r� ;E� and HnLs
loc �r� ;E�, depending

on the spin index s of the local frame.
The solution of the Schrödinger equation separately for

each spin channel provides also the diagonal t matrix of each
atomic cell n in the local frame of reference:

tn
loc�E� = �t↑↑

loc�E� 0

0 t↓↓
loc�E�

� . �8�

Then the t matrix is rotated from the local to the global spin
frame of reference using the spin rotation matrix Un:

tn
glob�E� = Untn

loc�E�Un
†, �9�

Un being given by

Un = 
cos��n

2
�e−�i/2��n − sin��n

2
�e−�i/2��n

sin��n

2
�e�i/2��n cos��n

2
�e�i/2��n  . �10�

The polar angles �n and �n define the direction of the local
magnetic moment with respect to the global spin frame of
reference. Normally, �n and �n vary within the atomic cell,
but in the approximation used here, average angles are de-
fined for each cell via an averaging of the magnetization
density within the cell. Of course, when self-consistency is
achieved, both the averaged and the point-by-point varying
magnetization direction can be extracted from the output
density matrix. Thus the assumption of a unique spin direc-
tion in each cell is only made for the spin-dependent poten-
tial.

The t matrix in the global spin frame of reference can be
rewritten in the following way:

tn
glob�E� = Un�1

2
�t↑↑

loc�E� + t↓↓
loc�E�	1 +

1

2
�t↑↑

loc�E� − t↓↓
loc�E�	�z�Un

†

�11�

with �z the z component of the Pauli matrices:

�z = �1 0

0 − 1
� . �12�

It is convenient to define the projection matrices �ns for
the local spin-up �↑� and spin-down �↓� directions as

�ns =
1

2
Un�1 ± �z�Un

† = ��ns�2 �+ for s = ↑, − for s = ↓� .

�13�

Then tn
glob�E� is written as

tn
glob�E� = tn↑↑

loc �E��n↑ + tn↓↓
loc �E��n↓. �14�

In the collinear case the local and global frames are identical
and the projection operators reduce to

�↑ = �1 0

0 0
�, �↓ = �0 0

0 1
� �collinear case� .

�15�

At this stage, the difference between the t matric�es
�tn

glob= tn
glob− t̊n is calculated in order to get all the ingredients

to solve the Dyson equation for the structural Green function
�t̊n has been defined in the global frame in Eq. �6�	. This is
the analog of Eq. �2� in matrix form in spin space:

Gstr�E� = G̊str�E� + G̊str�E��tglob�E�Gstr�E� . �16�

Here, in analogy to Eq. �1� and Eq. �2�, Gstr�E� are matrices
of size 2�2 in spin space, size �lmax+1�2� �lmax+1�2 in an-
gular momentum space, and size N�N �with N the number
of sites� in real space; all these indices are combined to form
2� �lmax+1�2�N-dimensional matrices. The t matrix itself is
diagonal in real-space site indexes. The solution of Eq. �16�
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for the structural Green function requires matrix inversion,
yielding Gstr�E� in the global frame:

Gstr�E� = G
�

str�E��1 − �tglob�E�G̊str�E�	−1. �17�

Equation �1� can be now rewritten in the noncollinear
case in order to obtain the Green function in the global
frame. Using the matrices �ns �Eq. �13�	 to project the local
wave functions to the global frame, the Green function is
written as

Gglob�R� n + r�,R� n� + r��;E�

= − i�E�
Ls

RnLs
loc �r��;E�HnLs

loc �r��;E��ns

+ �
LL�ss�

RnLs
loc �r�;E��nsGLL�nn�

glob �E��n�s�Rn�L�s�
loc �r��;E� . �18�

If needed, the Green function can be rotated to the local
frame of any atom by the use of the transformation matrices
Un �Eq. �10�	. We point out that, even in the local frame of
reference, the Green function is not in general diagonal in
spin space. Finally we calculate the charge density and spin
density from Eqs. �3� and �4�. The spin-dependent local den-
sity of states within the Wigner-Seitz cell �WS� of each site n
is

nns�E� = −
1

	
�

WS
Im Gss�R� n + r�,R� n + r�;E�d3r . �19�

The spin density m� = �mx ,my ,mz� �Eq. �4�	 is noncollinear.
The new polar angles at each site n can then be obtained for
each point by

tan �n�r�� =
mn

z�r��
mn�r��

, tan �n�r�� =
mn

y�r��
mn

x�r��
�20�

or as an average over the local Wigner-Seitz cell

tan �n =

�
WS

mn
z�r��dr�

�
WS

mn�r��dr�

, tan �n =

�
WS

mn
y�r��dr�

�
WS

mn
x�r��dr�

. �21�

III. APPLICATIONS

As an application of our method, we study the magnetic
state of 3d-atom clusters in and on the Ni�001� surface. In a
first step, we study the adatom properties, which are already
known from previous work. In a second step, we perform
calculations for 3d dimers and trimers and use the under-
standing gained from the single adatoms in order to explain
the results.

Our calculations henceforth are based on the local-spin-
density approximation �LSDA� of density-functional theory
with the parametrization of Vosko et al.32 The full nonspheri-
cal potential was used, taking into account the correct de-
scription of the Wigner-Seitz atomic cells.33 Angular mo-

menta up to lmax=3 were included in the expansion of the
Green functions and up to 2lmax=6 in the charge-density ex-
pansion. Relativistic effects were described in the scalar rela-
tivistic approximation.

First, the surface Green functions are determined by the
screened KKR method24 for the �001� surface of Ni which
serves as the reference system. The equilibrium lattice pa-
rameter of Ni was used �6.46 a .u . �3.42 Å�. To describe the
impurities on the surface �later we refer to these as adatoms
and to the impurities sitting in the first surface layer as ina-
toms�, we consider a cluster of perturbed potentials which
includes the potentials of the impurities and the perturbed
potentials of several neighboring shells, with typical size
ranging from 19 perturbed sites for the single impurity to 32
for the dimers and trimers; in all cases, at least the first
neighboring sites of the impurity atoms were taken into ac-
count in the calculation to ensure the correct screening of the
impurity potential. Test calculations have shown that this is
adequate for our work; this is a merit of the Green-function
method, in which the correct boundary conditions of the host
�in our case of the host surface� are included in the Green
function via the Dyson equation. We consider the adatoms at
the unrelaxed hollow position in the first vacuum layer, and
the inatoms at the unrelaxed position in the first surface
layer.

The orientations assigned to the spin moments of the im-
purities are always relative to the orientation of the substrate
moment, which we take as the global frame. This, in turn,
depends on delicate physical quantities such as the magnetic
anisotropy energy, which cannot be related to the local prop-
erties of the small clusters that we study. In the present ap-
proach such effects arising from spin-orbit interaction are not
included. The direction of the host moments must therefore
be considered as an input parameter from experiments or
from independent ab initio calculations.

A. 3d single adatoms and inatoms

3d adatoms on Fe�001� and on Ni�001� have been already
studied previously, using the KKR method25–28 in the atomic
sphere approximation. Here we repeat the calculations of 3d
adatoms on Ni�001� using the full potential method �a de-
tailed work on Fe and Co on Ni�001� is presented in a recent
article29	. We give a brief analysis of the results, which are
basically unchanged, in order to use them as a step for un-
derstanding the behavior of dimers and trimers later on.

A collinear calculation of the magnetic state of a single
adatom on a ferromagnetic substrate can give in some cases
two solutions: one with ferromagnetic �FM� coupling to the
substrate and one with antiferromagnetic �AF� coupling. One
of these states will correspond to the real ground state, and
the other to a local minimum; this is actually a local mini-
mum with respect to collinear variations of the magnetic
moment, since the angle � between the local moment and the
substrate moment cannot be varied in a collinear calculation.
From total-energy calculations of the two states, the ground
state can be then determined. In some cases, when the intra-
atomic exchange field is not strong �beginning or end of the
3d series�, only one of the two minima exists. On the other
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hand, if noncollinear effects are included in the calculations,
one of the two minima usually becomes unstable against an
angular rotation of the moment, i.e., it is then actually a
saddle point.

The full diamonds in Fig. 1�a� show the energy difference
between the AF and the FM solution for 3d adatoms on
Ni�001�. The first elements of the 3d series �Sc, Ti, V, Cr� are
AF coupled to the substrate whereas the coupling of Mn, Fe,
Co, and Ni is FM. Sc �AF�, Ti �AF�, and Ni �FM� are char-
acterized by a single solution. Clearly, the AF-FM transition
occurs when the adatom atomic number changes from Cr
�Z=24� to Mn �Z=25�. This transition can be interpreted as
in the case of the interatomic interaction of magnetic

dimers,30,31 in terms of the energy gain due to the formation
of hybrid states with the Ni substrate as the 3d virtual bound
state comes lower in energy with increasing Z. An explana-
tion �see Fig. 2� can be given in terms of the d–d hybridiza-
tion between the adatom 3d states and the Ni substrate 3d
states. Energy is gained when a half-occupied d virtual
bound state �VBS� at EF is broadened by hybridization with
the Ni minority 3d states, which lie at EF �the Ni majority d
states are fully occupied and positioned below EF�. For the
early 3d adatoms �Fig. 2�a�	, it is the majority d VBS which
is at EF, thus the majority-spin direction of the adatom is
favorably aligned with the minority-spin direction of Ni, and
an AF coupling arises. For the late 3d adatoms �Fig. 2�b�	, on
the contrary, the minority d VBS is at EF, and this aligns
with the Ni minority d states; then a FM coupling arises. For
our purposes we keep in mind that, since Cr and Mn are in
the intermediate region, i.e., near the AF-FM transition point,
their magnetic coupling to the Ni substrate is weak; this has
consequences to be seen in the behavior of dimers, trimers,
etc., in the next subsections.

The magnetic moments of the adatoms and Ni first neigh-
bors in the surface layer are shown in Figs. 1�b� and 1�c�.
Evidently the moment of the Ni first neighbors is strongly
affected by the adatoms. Especially in the AF state for Mn,
Fe, and Co adatoms, the Ni moment is strongly reduced and
the FM configuration is stable. As regards the adatom mo-
ments, due to its half filled d band the Mn adatom carries the
highest magnetic moment �4.09B� followed by Cr �3.48B�
and Fe �3.24B�.

To understand the effect of coordination and stronger hy-
bridization on the magnetic behavior of the adatoms, we take
the case of impurities sitting in the first surface layer �ina-
toms�. We carried out the calculations for V, Cr, Mn, Fe, and
Co impurities. The corresponding spin moments are shown
in Fig. 1�b� �circles�, and the FM-AF energy differences are
shown in Fig. 1�a� �open diamonds and dashed line�.

Compared to the adatom case, the spin moments are re-
duced, especially for V and Cr. This effect is expected due to
the increase of the coordination number from 4 to 8 and the
subsequent stronger hybridization of the 3d levels with the
host wave functions. Moreover, the energy difference �E
between the AF and FM solutions is affected. The trend can
be understood as follows. In the case of Cr, the reduction of
the local magnetic moment M is accompanied by a reduction
of the exchange splitting �EX as �EX� IM, where I�1 eV

FIG. 1. �Color online� 3d adatoms and inatoms on Ni�001�: �a�
Energy difference between the AF and FM coupling, the values
related to adatom and inatoms are described by, respectively, full
and empty black diamonds; �b� magnetic moments of the adatoms
�triangles� and inatoms �circles� within the two possible magnetic
configurations FM and AF; �c� the variation of the magnetic mo-
ments of Ni first nearest neighbors of the adatoms.

FIG. 2. �Color online�
Alexander-Anderson model for
neighboring magnetic atoms: �a�
early 3d transition elements in in-
teraction with Ni surface atoms;
�b� late 3d transition elements in
interaction with Ni surface atoms;
�c� Cr or Mn dimer.
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is the intra-atomic exchange integral. This means that, for the
inatom, the occupied 3d states are closer to EF than for the
adatom. In turn, this intensifies the hybridization of these
states with the Ni 3d states �which are close to EF�. At the
same time, also the higher coordination number intensifies
the d-d hybridization. The hybridization-induced level shift
in the AF configuration increases, and the energy of the AF
state is thus lowered. The same mechanism is responsible for
the weakening of the FM coupling of Mn inatom compared
to the adatom. Similarly, the stronger hybridization of the
Co-inatom d states stabilizes even more its FM configuration
due to the energy gain from the broadening of the d virtual
bound state.

B. Adatom and inatom dimers

Having established the single adatom behavior, we turn to
adatom dimers. We considered three geometries of increas-

ing distance: dimers as first, second, and fourth neighbors.
We will discuss the magnetic interaction between the dimer
atoms and the resulting magnetic order, first looking only at
collinear states and then allowing for noncollinear order. We
will see how, in certain cases, the collinear state reduces the
symmetry, while the noncollinear state restores the full sym-
metry of the system. Noncollinear order is finally established
for certain first-neighbor dimers.

Figure 3 represents schematically the different considered
geometrical configurations of impurity dimers residing on
the surface. We have investigated the dimer-1 type of geom-
etry �the adatoms are first neighboring atoms�, dimer-2 type
�the adatoms are second neighbors�, and dimer-3 type �the
adatoms are fourth neighbors�. This allows us to monitor the
strength of the magnetic coupling as a function of the dis-
tance. Three collinear magnetic configurations were treated:
�i� antiferromagnetic coupling within the dimer leading to a
ferrimagnetic solution �Ferri�, �ii� ferromagnetic coupling
within the dimer with both atoms ferromagnetically coupled
to the substrate �FM�, or �iii� ferromagnetic coupling within
the dimer with both atoms antiferromagnetically coupled to
the substrate �AF�.

Our calculations include V, Cr, Mn, and Fe dimers. We
found that all V and Fe dimer types behave like the adatoms:
in all geometries, both V atoms are AF and both Fe atoms are
FM. On the other hand, Cr and Mn dimers show magnetic
frustration. As shown in Fig. 3, both the Cr dimer 1 and Mn
dimer 1 show �in a collinear calculation� a Ferri ground state
�see Table I�. With increasing distance between the adatoms,
a transition occurs to the single adatom magnetic behavior
which is AF for Cr dimers and FM for Mn dimers. It is clear
that, in the dimer-1 case, there is a competition of exchange
interactions.

When we allow for a rotation of the magnetic moments,
noncollinear solutions are obtained for the Cr and Mn
dimer-1 systems. On the other hand, the magnetic coupling
of the V and Fe dimer 1 remains collinear. Let us start with
Cr dimer 1: Fig. 4�a� represents the collinear magnetic
ground state. As one expects from the adatom picture, both
adatoms forming the dimer tend to couple AF to the substrate
but due to their half filled d band they also tend to couple AF
to each other. This can be understood in terms of the
Alexander-Anderson model30,31. To give a short explanation
�see Fig. 2�c�	, both Cr and Mn have their majority-spin VBS
occupied, below EF, and the minority-spin VBS unoccupied,
above EF. An antiparallel configuration between the mo-
ments in a Mn or Cr dimer lowers the energy, because the
occupied d VBS of each atom hybridizes with the unoccu-
pied d VBS of the other atom and is shifted to lower eigen-
values. Contrary to this, a parallel coupling does not lower

FIG. 3. �Color online� Different geometrical configurations con-
sidered for dimers at the surface of Ni�001�. Dimer-1 type corre-
sponds to the case where the atoms are first neighboring atoms,
dimer-2 type where the atoms are 2�NN and finally dimer-3 type to
4�NN. The collinear magnetic ground states are also shown for V,
Cr, Mn, and Fe dimers.

TABLE I. Energy differences between the Ferri solution and the FM �AF� configuration for the three
types of dimers investigated.

Cr Mn

Dimer 1 Dimer 2 Dimer 3 Dimer 1 Dimer 2 Dimer 3

EFM-EFerri �eV� 0.451 0.130 0.120 0.065 −0.242 −0.239

EAF-EFerri �eV� 0.433 −0.093 −0.112 0.496 0.187 0.233
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the energy, since there is no level shifting, but only level
broadening of the majority d VBS. Since these are fully oc-
cupied, the broadening brings no energy gain.

Thus there is a competition between the interatomic cou-
pling within the dimer, which drives it to a Ferri state, and
the exchange interaction with the substrate, which drives the
moments of both atoms in the same direction: AF for Cr and
FM for Mn. As discussed in the previous subsection, the
magnetic exchange interaction �MEI� to the substrate is rela-
tively weak for Cr and Mn. Thus the intradimer MEI is
stronger than the MEI with the substrate, and in the collinear
approximation the ground state is found ferrimagnetic
�Ferri�. Removing the collinear constraint, a compromise can
be found such that both atoms are AF coupled to each other
and at the same time �for Cr� slightly AF coupled to the
substrate. This is shown in Fig. 4�b�: the Cr adatom moments
are aligned antiparallel to each other and basically perpen-
dicular to the substrate moments. However, the weak AF
interaction with the substrate causes a slight tilting towards
the substrate, leading to an angle of 94.2� instead of 90�. We
also observe a very small tilting ��0.3�� of the magnetic
moments of the four outer Ni atoms neighboring the Cr
dimer �the two inner Ni atoms do not tilt for symmetry rea-
sons�.

Despite the above considerations, the collinear Ferri state
�Fig. 4�a�	 is also a self-consistent solution of the Kohn-
Sham equations, even if the collinear constraint is removed.
Total-energy calculations are needed in order to determine if
the noncollinear state is the true ground state, or if it repre-

sents a local minimum of energy with the collinear result
representing the true ground state. After performing such cal-
culations we find that the ground state is collinear with an
energy difference of �ENcol-Ferri=39.84 meV �increasing the
angular-momentum cutoff to lmax=4 brought no significant
change to this result�.

The case is different for Mn dimers. Figure 5 shows the
collinear and the noncollinear solutions. The dimer atoms
couple strongly antiferromagnetically to each other but the
single Mn adatoms tend to couple �weakly� ferromagneti-
cally to the substrate. Both adatom moments, while aligned
antiferromagnetically with respect to each other, are tilted in
the direction of the substrate magnetization, as opposed to
the Cr dimer. With a rotation angle of �72.6�, the tilting
from the 90� configuration is rather large. Also the Ni mo-
ments are tilted by 7.4�. The main difference with the case of
Cr dimer 1 is that for Mn dimer 1 the noncollinear solution is
the ground state �total-energy calculations yield �ENcol-Ferri
=−13.45 meV�. The spin moments of the V, Cr, Mn, and Fe
dimers are given in Table III.

In both cases �Cr and Mn dimers� the frustrated collinear
solution is asymmetric, while the noncollinear ground state
restores the twofold symmetry of the system. The differences
in energy between the Ferri and the noncollinear solutions
are small and can be altered either by using a different type
of exchange and correlation functional such as GGA or
LSDA+U, or after relaxing the atoms. We note, however,
that in a test calculation we found the Cr single-adatom re-
laxation to be small �3.23% inward with respect to the inter-

FIG. 4. �Color online� Most stable configurations of Cr dimer-1
type obtained with �a� the collinear KKR method and �b� the non-
collinear KKR method. The rotation angle with respect to the z axis
is equal to 94.2�. The collinear state is the ground state, with the
noncollinear state being a local minimum �see text�.

FIG. 5. �Color online� Most stable configurations of Mn dimer-1
type obtained with the collinear KKR method �a� and noncollinear
KKR method �b�. The rotation angle with respect to the z axis is
equal to 72.6�. The noncollinear state is the ground state.
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layer distance�, and thus we believe that the relaxation can-
not affect the exchange interaction considerably.

As a cross check, it is interesting to compare these non-
collinear ab initio results to model calculations based on the
Heisenberg model with the exchange parameters fitted to the
total-energy results. We assume a classical spin Hamiltonian
of the form

H = −
1

2�
i�j

Jije�ie� j . �22�

Here, e� is a unit vector defining the direction of the magnetic
moment and i and j indicate the dimer atoms and their first
Ni neighbors. We can evaluate the interatomic exchange con-
stants JCr-Ni, JMn-Ni, JMn-Mn, and JCr-Cr via a fit to the total
energy obtained from collinear LSDA calculations of the
FM, AF, and Ferri configurations. Taking into account only
first-neighbor interactions and neglecting the rotation of Ni
moments, we rewrite the Hamiltonian for the dimer in terms
of the tilting angles �1 and �2 of the two Cr �or Mn� atoms
�the azimuthal angles � do not enter the expression because
of symmetry reasons�:

H = − JCr-Crcos��1 − �2� − 4JCr-Ni�cos �1 + cos �2� + const.

�23�

We note the two extreme cases arising from this Heisenberg
Hamiltonian: �i� �JCr-Ni � � �JCr-Cr� leads to the stabilization of
the collinear FM or AF configuration �adatomlike behavior�
and �ii� �JCr-Ni � � �JCr-Cr� leads to antiferromagnetic coupling
within the dimer if JCr-Cr�0. Within the Heisenberg model
the Ferri solution and the noncollinear solution with �=90�

have the same energy.
Table II summarizes the estimated exchange parameters.

Two effects are striking: �i� The strong antiferromagnetic
Cr-Cr and Mn-Mn interaction for the dimer 1 �nearest neigh-
bors�, being an order of magnitude larger than the exchange
interactions with the substrate and being responsible for the
stabilization of the noncollinear state structures shown in
Figs. 4 and 5. �ii� The very weak Cr-Cr and Mn-Mn interac-
tions in the dimer-2 and -3 configurations. Whereas for the
nearest-neighbors configuration �dimer-1� the direct overlap
of the d-wave functions of the Cr and Mn atoms leads to the
strong coupling, this overlap is missing for larger distances

and the interaction can only proceed through the substrate.
However, this interaction is weak, in fact considerably
smaller than the interaction of both adatoms with the four
neighboring Ni atoms of the substrate. Therefore these
dimers are effectively decoupled, and behave like the iso-
lated adatoms, being antiferromagnetically coupled to the
substrate in the case of Cr and ferromagnetically for Mn. The
exchange constants Jij fitted to total-energy results can be
compared to the ones obtained by using the Lichtenstein for-
mula �starting from the Ferri ground state�. This rests on the
force theorem, and yields the exchange constants relevant to
an infinitesimal rotation of the moments. The results of the
two methods agree best for the Mn-Mn interaction, and rea-
sonably well for the Cr-Cr interaction, but not for Mn-Ni and
Cr-Ni.

With the parameters from Table II one can also recalculate
the noncollinear structure of the ground state. The agreement
with the ab initio results is quite reasonable. For the Cr
dimer, one finds a slightly smaller tilting, i.e., 96� instead of
94.2�, while for the Mn dimer the angle is 67.3� instead of
70.6�.

The differences in energy calculated within this simple
model show that the Cr dimer 1 has a noncollinear ground
state ��ENcol-Ferri=−9.7 meV� as well as the Mn dimer 1
��ENcol-Ferri=−41.6 meV�. The discrepancy obtained for the
case of Cr dimer 1 �the LSDA calculation gives the collinear
Ferri ground state� can be attributed to the restrictions of the
Heisenberg model. For instance, for the Ferri and noncol-
linear configurations, the Cr moments are slightly different,
and also the reduction of the Ni moments as a function of the
rotation angle �e.g., for the single adatom� cannot be de-
scribed by the Heisenberg model, where the absolute values
of the moments are assumed to be constant. Within the
Heisenberg model, the Ferri solution �with �1=0� and �2
=180�� is degenerate with the noncollinear solution ��1,2
=90� with AF coupling within the dimer�.

To evaluate the effect of change in coordination and hy-
bridization, we have undertaken a study of inatom first-
neighbor dimers for V, Cr, Mn, and Fe. The V and Fe inatom
dimers were found to behave like the adatom dimers. The V
dimer is in an AF state, the Fe dimer in a FM state, while the
Cr and Mn dimers are in a Ferri state �in the case of collinear
constraint�. The spin moments in the collinear and noncol-
linear states are given in Table III. Within the Ferri dimers,
the difference between the moments of the two atoms is due
to the different kind of coupling that each inatom has with
the substrate �AF or FM�. One notices also that the magnetic
moments in the ground state decrease compared to the values
obtained for the single inatoms and single adatoms. When
the rotation of the moments is allowed, Cr dimer can be
stabilized at an angle of 107� �instead of 94.2� found for the
adatom-dimer case�, and Mn dimer at an angle of 80.9� �in-
stead of 72.6��. Thus the noncollinear solutions obtained for
inatom dimers are rather similar to what was obtained for
adatom dimers. Energetically, however, both the Cr and the
Mn inatom dimers show a lower total energy in the collinear
Ferri state �for Cr, �ENcol-Ferri=24.11 meV; for Mn,
�ENcol-Ferri=22.5 meV�.

TABLE II. Values of magnetic exchange parameters Jij for Cr
and Mn dimers on Ni�001�, fitted from collinear first-principles
total-energy calculations �b� and obtained by the Lichtenstein for-
mula �Ref. 34� �a� �JCr-Ni and JMn-Ni are averaged over the different
Ni first neighbors of the dimer atoms�. Positive Jij correspond to
ferromagnetic interactions, negative Jij to antiferromagnetic ones.

�a� �b�
Jij �meV� Dimer 1 Dimer 1 Dimer 2 Dimer 3

JCr-Ni −1.3 −11.6 −13.9 −14.5

JCr-Cr −189.1 −221.3 −9.2 −2.0

JMn-Ni 13.0 27.0 26.8 29.5

JMn-Mn −138.2 −140.2 13.7 1.5
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C. Trimers

Following the same procedure as for dimers we first in-
vestigated several collinear magnetic configurations for the
most compact trimer on the Ni�001� surface, which has the
shape of an isosceles rectangular triangle �see Fig. 6� of side
�2a /2 and hypotenuse a �a is the Ni fcc lattice constant�. It
is expected, and verified by total-energy calculations, to find
the ↓↑↓ configuration as the collinear magnetic ground state
for Cr and the ↑↓↑ for the Mn trimer �↑ means an atomic

moment parallel to the substrate, ↓ an antiparallel one; the
middle arrow represents the direction of the atomic moment
at the right-angle corner of the triangle�. In Table IV, the
energy differences among the possible collinear configura-
tions are given; for the ↑↑↑ and ↓↓↓ Cr trimers, no self-
consistent solution could be found.

Allowing free rotation of the magnetic moments leads to
no change for the Cr trimer ↓↑↓—the state remains collinear
�within numerical accuracy�. On the other hand, for the Mn
trimer a noncollinear solution is found �Fig. 6� with the near-
est neighbors almost antiferromagnetic to each other, but
with a collective tilting angle with respect to the substrate.
This tilting angle is induced by the ferromagnetic MEI be-
tween the central Mn atom with the substrate, competing
with the antiferromagnetic MEI with its two companions.
The top view of the surface shows that the in-plane compo-
nents of the magnetic moments are collinear.

The tilting is somewhat smaller �21.7�� for the two Mn
atoms with moments up than for the Mn atom with moment
down �28.5��. Also the neighboring Ni-surface atoms expe-
rience small tilting, with varying angles around 4�–10�. From
the energy point of view, the ground state is the collinear
one, ↑↓↑, with an energy difference of �ENcol-↑↓↑
=22.92 meV with respect to the noncollinear solution.

We have also investigated the cases where the trimers are
sitting in the surface layer. No noncollinear solution was
found, while there is no change in the collinear ground state
which is ↓↑↓ for the Cr trimer and ↑↓↑ for Mn trimer.

One should note that the moments of the two first neigh-
boring impurities are almost compensated in the Ferri solu-
tion. The third moment determines the total interaction be-
tween the substrate and the trimer which has then a net
moment coming mainly from the additional impurity. This
interaction is identical to the single adatom �or inatom� type
of coupling.

TABLE III. Atomic spin moments �in B� of the adatom and inatom dimers �of type 1, i.e., nearest
neighbors� in the collinear and noncollinear configurations. A minus sign of the collinear moments indicates
an antiparallel orientation with respect to the substrate magnetization. Embedding the dimer into the surface
causes, as expected, a decrease of the spin moments due to stronger hybridization of the d-wave functions.

Dimer type V �AF� Cr �Ferri� Cr �Ncol� Mn �Ferri� Mn �Ncol� Fe �FM�

On Ni�001� �−1.28,−1.28� �−3.04,3.05� �3.03,3.03� �−3.84,3.69� �3.75,3.75� �3.10,3.10�
In Ni�001� �−0.32,−0.32� �−2.00,1.96� �1.97,1.97� �−3.32,3.20� �3.26,3.26� �2.88,2.88�

FIG. 6. �Color online� Noncollinear state of the Mn trimer on
Ni�001� surface. Side view �a� and front view �b� are shown. This
represents a local minimum in energy, with the collinear state being
the ground state �see text�.

TABLE IV. Energy differences between the different calculated
collinear magnetic configurations with the ↓↑↓ configuration. The
direction of the arrows represents the direction of the atomic mo-
ments relative to the substrate magnetization �↑ parallel, ↓ antipar-
allel�. The middle arrow represents the atom at the right-angle cor-
ner of the trimer.

Magn. config. ↑↑↓ ↓↑↓ ↓↓↑ ↑↓↑ ↑↑↑ ↓↓↓

Cr: E−E↓↑↓ �eV� 0.420 0 0.390 0.193

Mn: E−E↓↑↓ �eV� 0.116 0 0.318 −0.184 0.239 0.817
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IV. SUMMARY

We have presented a formalism for the treatment of non-
collinear magnetic clusters on surfaces and in bulk, based on
the Green-function technique of Korringa, Kohn, and Ros-
toker, and on spin-density-functional theory. We have applied
the formalism on the study of small transition-metal clusters
�dimers and trimers� on and in the Ni�001� surface.

Emphasis was placed on Cr and Mn clusters, for which
we found that magnetic frustration can lead to noncollinear
magnetic order. The origin of the frustration is the competi-
tion of the antiferromagnetic exchange coupling among the
Cr or Mn atoms with the antiferromagnetic �for Cr� or ferro-
magnetic �for Mn� exchange coupling between the adatoms
and the substrate. In this respect, the result is different than
the prototype noncollinear configurations arising from anti-
ferromagnetic interactions among atoms in triangular geom-
etry.

We found that Cr and Mn first-neighboring adatom dimers
can show noncollinear behavior, while increasing the dis-
tance between the adatoms of the dimer leads to the same
state as for single adatoms. The energy differences between
the collinear ferrimagnetic state and the noncollinear one are
�ENcol-Ferri

Cr =39.84 meV �the ground state is collinear�,
�ENcol-Ferri

Mn =−13.45 meV �the ground state is noncollinear�.
Embedding the dimers in the first surface layer restores the
Ferri collinear solution as a ground state also for Mn adatom

dimers ��ENcol-Ferri
Cr =24.11 meV, �ENcol-Ferri

Mn =22.5 meV�.
Our ab initio results for dimers are compared to the solu-

tion of a classical Heisenberg model with exchange param-
eters fitted to total-energy calculations. The agreement for
the tilting angles in the noncollinear state is good, but the
Heisenberg model does not capture the collinear ground state
for the Cr dimer. This discrepancy occurs because the
Heisenberg model is restricted to constant absolute values of
localized spins.

The trimers studied so far are characterized by a collinear
ground state: ↓↑↓ for the Cr trimer and ↑↓↑ for the Mn
trimer. The Mn trimer has also a noncollinear metastable
solution with an energy difference �ENcol-↑↓↑=22.92 meV.

We believe that the energetic proximity of the collinear to
the noncollinear states is directly related to the weakness of
the exchange interaction with the Ni substrate. Replacing it
by an fcc Fe substrate will possibly change the ground state
drastically. Work in this direction is in progress and will be
reported elsewhere.
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