147 research outputs found

    Hamiltonization of theories with degenerate coordinates

    Get PDF
    We consider a class of Lagrangian theories where part of the coordinates does not have any time derivatives in the Lagrange function (we call such coordinates degenerate). We advocate that it is reasonable to reconsider the conventional definition of singularity based on the usual Hessian and, moreover, to simplify the conventional Hamiltonization procedure. In particular, in such a procedure, it is not necessary to complete the degenerate coordinates with the corresponding conjugate momenta.Comment: 14 pages, LaTex fil

    Comments on ``A note on first-order formalism and odd-derivative actions'' by S. Deser

    Full text link
    We argue that the obstacles to having a first-order formalism for odd-derivative actions presented in a pedagogical note by Deser are based on examples which are not first-order forms of the original actions. The general derivation of an equivalent first-order form of the original second-order action is illustrated using the example of topologically massive electrodynamics (TME). The correct first-order formulations of the TME model keep intact the gauge invariance presented in its second-order form demonstrating that the gauge invariance is not lost in the Ostrogradsky process.Comment: 6 pages, references are adde

    Ostrogradsky's Hamilton formalism and quantum corrections

    Full text link
    By means of a simple scalar field theory it is demonstrated that the Lagrange formalism and Ostrogradsky's Hamilton formalism in the presence of higher derivatives, in general, do not lead to the same results. While the two approaches are equivalent at the classical level, differences appear due to the quantum corrections.Comment: 10 pages, 1 figure, REVTeX

    Ghost-free higher-derivative theory

    Full text link
    We present an example of the quantum system with higher derivatives in the Lagrangian, which is ghost-free: the spectrum of the Hamiltonian is bounded from below and unitarity is preserved.Comment: 13 pages, 1 figur

    On Hamiltonian formulation of the Einstein-Hilbert action in two dimensions

    Full text link
    It is shown that the well-known triviality of the Einstein field equations in two dimensions is not a sufficient condition for the Einstein-Hilbert action to be a total divergence, if the general covariance is to be preserved, that is, a coordinate system is not fixed. Consequently, a Hamiltonian formulation is possible without any modification of the two dimensional Einstein-Hilbert action. We find the resulting constraints and the corresponding gauge transfromations of the metric tensor.Comment: 9 page

    Spontaneously scalarized Kerr black holes in extended scalar-tensor-Gauss-Bonnet gravity

    Get PDF
    We construct asymptotically flat, spinning, regular on and outside an event horizon, scalarized black holes (SBHs) in extended scalar-tensor-Gauss-Bonnet models. They reduce to Kerr BHs when the scalar field vanishes. For an illustrative choice of nonminimal coupling, we scan the domain of existence. For each value of spin, SBHs exist in an interval between two critical masses, with the lowest one vanishing in the static limit. Non-uniqueness with Kerr BHs of equal global charges is observed; the SBHs are entropically favoured. This suggests that SBHs form dynamically from the spontaneous scalarization of Kerr BHs, which are prone to a scalar-triggered tachyonic instability, below the largest critical mass. Phenomenologically, the introduction of BH spin damps the maximal observable difference between comparable scalarized and vacuum BHs. In the static limit, (perturbatively stable) SBHs can store over 20% of the spacetime energy outside the event horizon; in comparison with Schwarzschild BHs, their geodesic frequency at the ISCO can differ by a factor of 2.5 and deviations in the shadow areal radius may top 40%. As the BH spin grows, low mass SBHs are excluded, and the maximal relative differences decrease, becoming of the order of a few percent for dimensionless spin j≳0.5. This reveals a spin selection effect: non-GR effects are only significant for low spin. We discuss if and how the recently measured shadow size of the M87 supermassive BH constrains the length scale of the Gauss-Bonnet coupling.publishe

    Second Order Gauge Theory

    Full text link
    A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G=F+fAFG=\partial F+fAF arises besides the one of the first order treatment, F=AA+fAAF=\partial A-\partial A+fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is LPG2L_{P}\propto G^{2}. In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian.Comment: 27 pages. No figure. Final versio

    Gauge invariances of higher derivative Maxwell-Chern-Simons field theory -- a new Hamiltonian approach

    Full text link
    A new method of abstracting the independent gauge invariances of higher derivative systems, recently introduced in [1], has been applied to higher derivative field theories. This has been discussed taking the extended Maxwell-Chern-Simons model as an example. A new Hamiltonian analysis of the model is provided. This Hamiltonian analysis has been used to construct the independent gauge generator. An exact mapping between the Hamiltonian gauge transformations and the U(1) symmetries of the action has been established.Comment: 16 pages, no figure. Title and abstract modified, new references added. This version to appear in Phys. Rev.

    Cleaning up the cosmological constant

    Full text link
    We present a novel idea for screening the vacuum energy contribution to the overall value of the cosmological constant, thereby enabling us to choose the bare value of the vacuum curvature empirically, without any need to worry about the zero-point energy contributions of each particle. The trick is to couple matter to a metric that is really a composite of other fields, with the property that the square-root of its determinant is the integrand of a topological invariant, and/or a total derivative. This ensures that the vacuum energy contribution to the Lagrangian is non-dynamical. We then give an explicit example of a theory with this property that is free from Ostrogradski ghosts, and is consistent with solar system physics and cosmological tests.Comment: 8 pages, typos corrected and more text added, version accepted for publication in JHE

    Perturbative Hamiltonian constraints for higher order theories

    Full text link
    We present a method for constructing a consistent low energy canonical formalism for higher order time-derivative theories, extending the Dirac method to include perturbative Hamiltonian constraints. We apply it to two paradigmatic examples: the Pais-Uhlenbeck oscillator and the Bernard-Duncan scalar field. We also compare the results, both at the classical and quantum level, with the ones corresponding to a direct perturbative construction applied to the exact higher order theory. This comparison highligths the soundness of the present formalism.Comment: 26 pages, 4 figures; review section shortened and appendices change
    corecore