331 research outputs found
Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning
The observation of gravitational waves from compact binary coalescences by
LIGO and Virgo has begun a new era in astronomy. A critical challenge in making
detections is determining whether loud transient features in the data are
caused by gravitational waves or by instrumental or environmental sources. The
citizen-science project \emph{Gravity Spy} has been demonstrated as an
efficient infrastructure for classifying known types of noise transients
(glitches) through a combination of data analysis performed by both citizen
volunteers and machine learning. We present the next iteration of this project,
using similarity indices to empower citizen scientists to create large data
sets of unknown transients, which can then be used to facilitate supervised
machine-learning characterization. This new evolution aims to alleviate a
persistent challenge that plagues both citizen-science and instrumental
detector work: the ability to build large samples of relatively rare events.
Using two families of transient noise that appeared unexpectedly during LIGO's
second observing run (O2), we demonstrate the impact that the similarity
indices could have had on finding these new glitch types in the Gravity Spy
program
Postoperative serum CA19-9, YKL-40, CRP and IL-6 in combination with CEA as prognostic markers for recurrence and survival in colorectal cancer
Background In colorectal cancer (CRC) patients, guidelines only recommend measurement of preoperative carcinoembryonic antigen (CEA), although postoperative CEA may be more informative. However, the sensitivity of both preoperative and postoperative CEA in identifying relapse is limited. We studied whether CA19-9, YKL-40, C-reactive protein (CRP) and interleukin (IL)-6 add prognostic information combined with postoperative CEA. Material and methods This post-hoc analysis included 147 radically resected stage II (n = 38), III (n = 91) and IV (n = 18) CRC patients treated with adjuvant 5-fluorouracil (5-FU)-based therapy in the phase III LIPSYT study (ISRCTN98405441). We collected postoperative blood samples a median of 48 days after surgery. We analysed relapses, sensitivity, positive predictive value (PPV) and disease-free (DFS) and overall survival (OS) by bootstrap, Kaplan-Meier and adjusted Cox-models in the elevated vs. normal biomarker groups. Results Elevated postoperative CEA associated with impaired DFS (HR 7.23; CI(95%)3.85-13.58), impaired OS (HR 7.16; CI(95%)3.76-13.63), and more relapses (HR 7.9; CI(95%)3.4-18.2); but sensitivity for CEA in finding relapses was only 31% (CI(95%)21-48%). Normal CEA combined with an elevated YKL-40 or elevated CRP showed more relapses (HR for YKL-40 2.13 [CI(95%)1.10-4.13], HR for CRP 3.14 [CI(95%)1.21-8.16]), impaired DFS (HR 2.18 [CI(95%)1.12-4.24] or 3.23 [CI(95%)1.34-7.82]), and impaired OS (2.33 [CI(95%)1.24-4.40] or 2.68 [CI(95%)1.12-6.44]). Elevated CEA combined with a concomitantly elevated CA19-9, YKL-40, CRP or IL-6 showed a respective PPV of 100, 90, 100, and 100%. Conclusion In radically operated stage II to IV CRC patients who received adjuvant 5-FU-based chemotherapy, a postoperatively elevated CEA alone or in combination with CA19-9, YKL-40, CRP, or IL-6, or a normal CEA combined with an elevated YKL-40 or with an elevated CRP, may indicate patients at high risk of relapse.Peer reviewe
Implication of the overlap representation for modelling generalized parton distributions
Based on a field theoretically inspired model of light-cone wave functions,
we derive valence-like generalized parton distributions and their double
distributions from the wave function overlap in the parton number conserved
s-channel. The parton number changing contributions in the t-channel are
restored from duality. In our construction constraints of positivity and
polynomiality are simultaneously satisfied and it also implies a model
dependent relation between generalized parton distributions and transverse
momentum dependent parton distribution functions. The model predicts that the
t-behavior of resulting hadronic amplitudes depends on the Bjorken variable
x_Bj. We also propose an improved ansatz for double distributions that embeds
this property.Comment: 15 pages, 8 eps figure
Health-Related Quality of Life in Metastatic Colorectal Cancer Patients Treated with Curative Resection and/or Local Ablative Therapy or Systemic Therapy in the Finnish RAXO-Study
Metastasectomy and/or local ablative therapy in metastatic colorectal cancer (mCRC) patients often provide long-term survival. Health-related quality of life (HRQoL) data in curatively treated mCRC are limited. In the RAXO-study that evaluated repeated resectability, a multi-cross-sectional HRQoL substudy with 15D, EQ-5D-3L, QLQ-C30, and QLQ-CR29 questionnaires was conducted. Mean values of patients in different treatment groups were compared with age- and gender-standardized general Finnish populations. The questionnaire completion rate was 444/477 patients (93%, 1751 questionnaires). Mean HRQoL was 0.89–0.91 with the 15D, 0.85–0.87 with the EQ-5D, 68–80 with the EQ-5D-VAS, and 68–79 for global health status during curative treatment phases, with improvements in the remission phase (disease-free >18 months). In the remission phase, mean EQ-5D and 15D scores were similar to the general population. HRQoL remained stable during first- to later-line treatments, when the aim was no longer cure, and declined notably when tumour-controlling therapy was no longer meaningful. The symptom burden affecting mCRC survivors’ well-being included insomnia, impotence, urinary frequency, and fatigue. Symptom burden was lower after treatment and slightly higher, though stable, through all phases of systemic therapy. HRQoL was high in curative treatment phases, further emphasizing the strategy of metastasectomy in mCRC when clinically meaningful
Health-Related Quality of Life in Metastatic Colorectal Cancer Patients Treated with Curative Resection and/or Local Ablative Therapy or Systemic Therapy in the Finnish RAXO-Study
Metastasectomy and/or local ablative therapy in metastatic colorectal cancer (mCRC) patients often provide long-term survival. Health-related quality of life (HRQoL) data in curatively treated mCRC are limited. In the RAXO-study that evaluated repeated resectability, a multi-cross-sectional HRQoL substudy with 15D, EQ-5D-3L, QLQ-C30, and QLQ-CR29 questionnaires was conducted. Mean values of patients in different treatment groups were compared with age- and gender-standardized general Finnish populations. The questionnaire completion rate was 444/477 patients (93%, 1751 questionnaires). Mean HRQoL was 0.89–0.91 with the 15D, 0.85–0.87 with the EQ-5D, 68–80 with the EQ-5D-VAS, and 68–79 for global health status during curative treatment phases, with improvements in the remission phase (disease-free >18 months). In the remission phase, mean EQ-5D and 15D scores were similar to the general population. HRQoL remained stable during first- to later-line treatments, when the aim was no longer cure, and declined notably when tumour-controlling therapy was no longer meaningful. The symptom burden affecting mCRC survivors’ well-being included insomnia, impotence, urinary frequency, and fatigue. Symptom burden was lower after treatment and slightly higher, though stable, through all phases of systemic therapy. HRQoL was high in curative treatment phases, further emphasizing the strategy of metastasectomy in mCRC when clinically meaningful
Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus.
Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV
Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions
Previous and present "academic" research aiming at atomic scale understanding
is mainly concerned with the study of individual molecular processes possibly
underlying materials science applications. Appealing properties of an
individual process are then frequently discussed in terms of their direct
importance for the envisioned material function, or reciprocally, the function
of materials is somehow believed to be understandable by essentially one
prominent elementary process only. What is often overlooked in this approach is
that in macroscopic systems of technological relevance typically a large number
of distinct atomic scale processes take place. Which of them are decisive for
observable system properties and functions is then not only determined by the
detailed individual properties of each process alone, but in many, if not most
cases also the interplay of all processes, i.e. how they act together, plays a
crucial role. For a "predictive materials science modeling with microscopic
understanding", a description that treats the statistical interplay of a large
number of microscopically well-described elementary processes must therefore be
applied. Modern electronic structure theory methods such as DFT have become a
standard tool for the accurate description of individual molecular processes.
Here, we discuss the present status of emerging methodologies which attempt to
achieve a (hopefully seamless) match of DFT with concepts from statistical
mechanics or thermodynamics, in order to also address the interplay of the
various molecular processes. The new quality of, and the novel insights that
can be gained by, such techniques is illustrated by how they allow the
description of crystal surfaces in contact with realistic gas-phase
environments.Comment: 24 pages including 17 figures, related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
- …