89 research outputs found

    SEC22 and SLY2 are identical - reply.

    Get PDF

    Pharmacokinetic properties of remimazolam in subjects with hepatic or renal impairment

    Get PDF
    BACKGROUND: Remimazolam is a new benzodiazepine for procedural sedation and general anaesthesia. The aim of this study was to characterise its pharmacokinetic properties and safety in renally and hepatically impaired subjects. METHODS: Two separate trials were conducted in patients with hepatic (n=11) or renal impairment (n=11) compared with matched healthy subjects (n=9 and n=12, respectively). The hepatic impairment trial was an open-label adaptive 'Reduced Design' trial, using a single bolus of remimazolam 0.1 mg kg-1 i.v., whereas the renal impairment trial was an open-label trial of a single bolus dose of remimazolam 1.5 mg i.v. Remimazolam plasma concentrations over time were analysed by population pharmacokinetic modelling. RESULTS: Remimazolam pharmacokinetic properties were adequately described by a three-compartment, recirculatory model. Exposure in subjects with severe hepatic impairment was 38.1% higher (i.e. clearance was 38.1% lower) compared with healthy volunteers. This increase caused a slightly delayed recovery (8.0 min for healthy, 12.1 min for moderate, and 16.7 min for severe hepatic impairment). With renal impairment, plasma clearance was comparable with that measured in healthy subjects. Simulations of Cmax after a bolus dose of 10 mg showed no relevant impact of hepatic or renal impairment. The overall incidence of adverse events was low, and all adverse events were mild. CONCLUSIONS: As Cmax after a remimazolam bolus i.v. was not affected by hepatic or renal impairment, no dose adjustments are required. No unexpected adverse events related to remimazolam were seen in subjects with renal or hepatic impairment. CLINICAL TRIAL REGISTRATION: Hepatic impairment trial: ClinicalTrials.gov, NCT01790607 (https://clinicaltrials.gov/ct2/show/NCT01790607). Renal impairment trial: EudraCT Number: 2014-004575-23

    A New Evolutionary Algorithm-Based Home Monitoring Device for Parkinson’s Dyskinesia

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative movement disorder. Although there is no cure, symptomatic treatments are available and can significantly improve quality of life. The motor, or movement, features of PD are caused by reduced production of the neurotransmitter dopamine. Dopamine deficiency is most often treated using dopamine replacement therapy. However, this therapy can itself lead to further motor abnormalities referred to as dyskinesia. Dyskinesia consists of involuntary jerking movements and muscle spasms, which can often be violent. To minimise dyskinesia, it is necessary to accurately titrate the amount of medication given and monitor a patient’s movements. In this paper, we describe a new home monitoring device that allows dyskinesia to be measured as a patient goes about their daily activities, providing information that can assist clinicians when making changes to medication regimens. The device uses a predictive model of dyskinesia that was trained by an evolutionary algorithm, and achieves AUC>0.9 when discriminating clinically significant dyskinesia

    Structure-Function Study of Mammalian Munc18-1 and C. elegans UNC-18 Implicates Domain 3b in the Regulation of Exocytosis

    Get PDF
    Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding

    Freezing of gait and fall detection in Parkinson’s disease using wearable sensors:a systematic review

    Get PDF
    Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson’s disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73–100% for sensitivity and 67–100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets

    VAMP3/Syb and YKT6 are required for the fusion of constitutive secretory carriers with the plasma membrane

    Get PDF
    The cellular machinery required for the fusion of constitutive secretory vesicles with the plasma membrane in metazoans remains poorly defined. To address this problem we have developed a powerful, quantitative assay for measuring secretion and used it in combination with combinatorial gene depletion studies in Drosophila cells. This has allowed us to identify at least three SNARE complexes mediating Golgi to PM transport (STX1, SNAP24/29 and Syb; STX1, SNAP24/29 and YKT6; STX4, SNAP24 and Syb). RNAi mediated depletion of YKT6 and VAMP3 in mammalian cells also blocks constitutive secretion suggesting that YKT6 has an evolutionarily conserved role in this process. The unexpected role of YKT6 in plasma membrane fusion may in part explain why RNAi and gene disruption studies have failed to produce the expected phenotypes in higher eukaryotes

    Picosecond Third Harmonic Generation inß-BaB_2O_4 and Calcite

    Get PDF

    Functionality and specific membrane localization of transport GTPases carrying C-terminal membrane anchors of synaptobrevin-like proteins.

    No full text
    Ras-related guanine nucleotide-binding proteins of the Ypt/Rab family fulfill a pivotal role in vesicular protein transport both in yeast and in mammalian cells. Proper functioning of these proteins involves their cycling between a GTP- and a GDP-bound state as well as their reversible association with specific membranes. Here we show that the yeast Ypt1 and Sec4 proteins, essential components of the vesicular transport machinery, allow unimpaired vesicular transport when permanently fixed to membranes by membrane-spanning domains replacing their two C-terminal cysteine residues. Membrane detachment of the GTPases therefore is not obligatory for transport vesicle docking to or fusion with an acceptor membrane. It was also found that the membrane anchors derived from different synaptobrevin-related proteins have targeting information and direct the chimeric GTPases to different cellular compartments, presumably from the endoplasmic reticulum via the secretory pathway
    corecore