57 research outputs found

    Africa

    Get PDF

    Impacts, adaptation and vulnerability to global environmental change: challenges and pathways for an action-oriented research agenda for middle-income and low-income countries

    Get PDF
    The socio-economic impacts of environmental stresses associated with global environmental change depend to a large extent on how societies organize themselves. Research on climate-related societal impacts, vulnerability and adaptation is currently underdeveloped, prompting international global environmental change research institutions to hold a series of meetings in 2009–2010. One of these aimed at identifying needs in middle-income and low-income countries (MLICs), and found that effective responses to the challenge of reducing vulnerability and enhancing adaptation will drive research and policy into challenging and innovative areas of research. Producing impacts, vulnerability and adaptation knowledge requires greater inclusion of MLIC researchers and a rethinking of the research structures, institutions and paradigms that have dominated global change research to date. Scientific literature discussed in this article suggests that governance issues need to become central objects of empirically based, detailed, multiscalar and action-oriented research, and that this needs to address the politically sensitive and seemingly intractable issue of reducing global inequities in power and resource distribution. The scientific literature suggests that without effective action in those directions, current trends toward greater inequality will continue to both reflect and intensify global environmental threats and their impacts

    Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO<sub>2 </sub>for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle.</p> <p>Results</p> <p>The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d<sup>-1 </sup>for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO<sub>2 </sub>mol H<sub>2</sub>O<sup>-1 </sup>and the light use efficiency (LUE) was 0.95 mmol CO<sub>2 </sub>mol PPFD<sup>-1</sup>. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d<sup>-1 </sup>for the 8 day period. The WUE was lower, 0.97 mmol CO<sub>2 </sub>mol H<sub>2</sub>O<sup>-1 </sup>and the LUE was higher, 7.2 <it>μ</it>mol CO<sub>2 </sub>mmol PPFD<sup>-1 </sup>during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 <it>μ</it>mol m<sup>-2</sup>s<sup>-1 </sup>and then levels off.</p> <p>Conclusion</p> <p>Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season 2005. The small sink during the dry season is surprising and similar dry season sinks have not to our knowledge been reported from other similar savanna ecosystems and could have potential management implications for agroforestry. A strong response of NEE versus small changes in plant available soil water content was found. Collection and analysis of flux data for several consecutive years including variations in precipitation, available soil moisture and labile soil carbon are needed for understanding the year to year variation of the carbon budget of this grass land/sparse savanna site in semi arid Sudan.</p
    corecore