1,032 research outputs found
Manoeuvring prediction based on CFD generated derivatives
This paper presents numerical predictions of ship manoeuvring motions with the help of computational fluid dynamics (CFD) techniques. A program applying the modular concept proposed by the Japanese ship manoeuvring mathematical modelling group (MMG) to simulate the standard manoeuvring motions of ships has been initially developed for 3 degrees of freedom manoeu- vring motions in deep water with regression formulae to derive the hydrodynamic derivatives of the vessels. For higher accuracy, several CFD generated derivatives had been substituted to replace the empirical ones. This allows for the prediction of the maneuve- rability of a vessel in a variety of scenarios such as shallow water with expected good results in practice, which may be significantly more time-consuming if performed using a fully CFD approach. The MOERI KVLCC2 tanker vessel was selected as the sample ship for prediction. Model scale aligned and oblique resistance and Planar Motion Mechanism (PMM) simulations were carried out using the commercial CFD software StarCCM+. The PMM simulations included pure sway and pure yaw to obtain the linear manoeuvring derivatives required by the computational model of the program. Simulations of the standard free running manoeuvers were carried out on the vessel in deep water and compared with published results available for validation. Finally, simulations in shallow water were also presented based on the CFD results from existing publications and compared with model test results. The challenges of using a coupled CFD approach in this manner are outlined and discussed
Phenotypic Characterization of Canadian Barley Advanced Breeding Lines for Multiple Disease Resistance
Fungal diseases pose a great challenge to Canadian barley production, among which are Fusarium head blight (FHB), yellow rust and scald. An integrated management approach is needed to mitigate these diseases, in which breeding for host resistance is the most effective component. Constant evaluation of advanced breeding lines for their resistance to the diseases is important for making steady progression. The main objective of this study was to screen 1,174 barley accessions, from a collaborative project between the Field Crop Development Center (FCDC), Alberta, Canada, and the International Maize and Wheat Improvement Center (CIMMYT), Mexico for their reactions to the three diseases. For FHB a 1-5 scale was employed to discard the very susceptible material in 2012 and 2013. In 2014, 514 most resistant lines having the score 1 in 2013 were re-evaluated in a replicated experiment. The most promising 166 genotypes were selected and advanced for their last evaluation in 2015 where FHB index was measured. Simultaneously, these 166 genotypes were subjected to two more experiments to test their reactions against stripe rust and scald. Eighteen two-rowed barley genotypes exhibiting broad-spectrum resistance to all of the three evaluated diseases were identified in addition to 40 lines combining FHB resistance with resistance to Mexican isolates and natural fungal population of either of the two foliar diseases and could be utilized in breeding programs aimed at improving resistance to multiple barley leaf and head blight diseases
Ship-to-ship interaction during overtaking operation in shallow water
Hydrodynamic interaction continues to be a major contributory factor in marine casualties and hazardous incidents, in particular, in the case of overtaking operations. The situation becomes even worse when the overtaking operation occurs in shallow and narrow channels, where the interaction can cause the vessels to collide and, in one case has caused the capsizal of the smaller vessel with loss of life. The aim of this article is to propose a methodology, as well as to discuss the development of a numerical program, to predict the ship-to-ship interaction during overtaking operations in shallow water. Since the vessels involved in this study have different forward speeds, an uncoupled method will be used to solve the boundary value problem. The in-house multibody hydrodynamic interaction program MHydro, which is based on the 3D Rankine source method, is used and extended here to investigate the interactive forces and wave patterns between two ships during an overtaking operation. The calculations given in this article are compared with model test results as well as published computational fluid dynamics (CFD) calculations. Very satisfactory agreement has been obtained, which indicates that the proposed methodology and developed program are successfully validated to predict the hydrodynamic interaction between two ships advancing in confined waters. The discussions also highlight the speed effects
Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand
Mitochondrial membrane biogenesis requires the import and synthesis of proteins as well as phospholipids. How the mitochondrion regulates phospholipid levels and maintains a tight protein-to-phospholipid ratio is not well understood. Two recent papers (Kutik, S., M. Rissler, X.L. Guan, B. Guiard, G. Shui, N. Gebert, P.N. Heacock, P. Rehling, W. Dowhan, M.R. Wenk, et al. 2008. J. Cell Biol. 183:1213–1221; Osman, C., M. Haag, C. Potting, J. Rodenfels, P.V. Dip, F.T. Wieland, B. Brügger, B. Westermann, and T. Langer. 2009. J. Cell Biol. 184:583–596) identify novel regulators of mitochondrial phospholipid biosynthesis. The biochemical approach of Kutik et al. (2008) uncovered an unexpected role of the mitochondrial translocator assembly and maintenance protein, Tam41, in the biosynthesis of cardiolipin (CL), the signature phospholipid of mitochondria. The genetic analyses of Osman et al. (2009) led to the discovery of a new class of mitochondrial proteins that coordinately regulate CL and phosphatidylethanolamine, another key mitochondrial phospholipid. These elegant studies highlight overlapping functions and interdependent roles of mitochondrial phospholipid biosynthesis and protein import and assembly
Differential expression of collectins in human placenta and role in inflammation during spontaneous Labor.
© 2014 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Collectins, collagen-containing Ca2+ dependent C-type lectins and a class of secretory proteins including SP-A, SP-D and MBL, are integral to immunomodulation and innate immune defense. In the present study, we aimed to investigate their placental transcript synthesis, labor associated differential expression and localization at feto-maternal interface, and their functional implication in spontaneous labor. The study involved using feto-maternal interface (placental/decidual tissues) from two groups of healthy pregnant women at term (≥37 weeks of gestation), undergoing either elective C-section with no labor ('NLc' group, n = 5), or normal vaginal delivery with spontaneous labor ('SLv' group, n = 5). The immune function of SP-D, on term placental explants, was analyzed for cytokine profile using multiplexed cytokine array. SP-A, SP-D and MBL transcripts were observed in the term placenta. The 'SLv' group showed significant up-regulation of SP-D (p = 0.001), and down-regulation of SP-A (p = 0.005), transcripts and protein compared to the 'NLc' group. Significant increase in 43 kDa and 50 kDa SP-D forms in placental and decidual tissues was associated with the spontaneous labor (p<0.05). In addition, the MMP-9-cleaved form of SP-D (25 kDa) was significantly higher in the placentae of 'SLv' group compared to the 'NLc' group (p = 0.002). Labor associated cytokines IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α and MCP-1 showed significant increase (p<0.05) in a dose dependent manner in the placental explants treated with nSP-D and rhSP-D. In conclusion, the study emphasizes that SP-A and SP-D proteins associate with the spontaneous labor and SP-D plausibly contributes to the pro-inflammatory immune milieu of feto-maternal tissues.Funding provided by BT/PR15227/BRB/10/906/2011) Department of Biotechnology (DBT), Government of India http://dbtindia.nic.in/index.asp (TM) and Indian Council of Medical Research (ICMR) Junior Research Fellowship (JRF)/Senior Research Fellowship (SRF), Government of India, www.icmr.nic.in (AKY)
Cardiac prehabilitation, rehabilitation and education in first-time atrial fibrillation (AF) ablation (CREED AF):Study protocol for a randomised controlled trial
Background: Atrial fibrillation (AF) is associated with significant morbidity/mortality. AF-ablation is an increasingly used treatment. Currently, first-time AF-ablation success is 40–80% at 1-year, depending on individual factors. There is growing evidence for improved outcomes through management of AF risk-factors/comorbidities via patient education/exercise-rehabilitation. There are no studies assessing combined prehabilitation/rehabilitation in this cohort. The aim of this randomised controlled trial is to assess efficacy of comprehensive prehabilitation/ rehabilitation and combining supervised exercise-training with AF risk-factor modification/ education compared with standard care in people undergoing first-time AF ablation. Methods: This single-centre pragmatic randomised controlled trial will recruit 106 adults with paroxysmal/persistent AF listed for first-time AF-ablation. Participants will be randomised 1:1 to cardiac prehabilitation/rehabilitation/education (CREED AF) intervention or standard care. Both groups will undergo AF-ablation at 8-weeks post-randomisation as per usual care. The CREED AF intervention will involve 6-weeks of prehabilitation (before AF-ablation) followed by 6-weeks rehabilitation (after AF-ablation) consisting of risk factor education/modification and supervised exercise training. Standard care will include a single 30-minute session of risk-factor education. Outcomes will be measured at baseline, 10-weeks and 12-months post AF-ablation, by researchers blinded to treatment allocation. The primary outcome is cardiorespiratory-fitness (peak oxygen uptake, VO 2peak) assessed using cardiopulmonary exercise testing (CPET) at 10-weeks post-ablation. Secondary outcomes include health-related quality of life, AF recurrence/burden assessed by 7-day Holter-monitor, requirement for repeat AF-ablation, study defined major adverse cardiovascular events, and cost-effectiveness (incremental cost per quality-adjusted life year (QALY)). Conclusions: This study will assess clinical-efficacy/cost-effectiveness of comprehensive prehabilitation/ rehabilitation/patient-education for people undergoing first time AF-ablation. Results will inform clinical care and design of future multi-centre clinical trials.</p
Kinetic Turbulence
The weak collisionality typical of turbulence in many diffuse astrophysical
plasmas invalidates an MHD description of the turbulent dynamics, motivating
the development of a more comprehensive theory of kinetic turbulence. In
particular, a kinetic approach is essential for the investigation of the
physical mechanisms responsible for the dissipation of astrophysical turbulence
and the resulting heating of the plasma. This chapter reviews the limitations
of MHD turbulence theory and explains how kinetic considerations may be
incorporated to obtain a kinetic theory for astrophysical plasma turbulence.
Key questions about the nature of kinetic turbulence that drive current
research efforts are identified. A comprehensive model of the kinetic turbulent
cascade is presented, with a detailed discussion of each component of the model
and a review of supporting and conflicting theoretical, numerical, and
observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al.
(eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science
Library 407, Springer-Verlag Berlin Heidelberg (2015
High-intensity interval training in cardiac rehabilitation (HIIT or MISS UK): A multi-centre randomised controlled trial
Background: There is a lack of international consensus regarding the prescription of high-intensity interval exercise training (HIIT) for people with coronary artery disease (CAD) attending cardiac rehabilitation (CR).Aim: To assess the clinical effectiveness and safety of low-volume HIIT compared with moderate intensity steady-state (MISS) exercise training for people with CAD.Methods: We conducted a multi-centre RCT, recruiting 382 patients from 6 outpatient CR centres. Participants were randomised to twice-weekly HIIT (n = 187) or MISS (n = 195) for 8 weeks. HIIT consisted of 10 × 1-minute intervals of vigorous exercise (>85% maximum capacity) interspersed with 1-minute periods of recovery. MISS was 20-40 minutes of moderate intensity continuous exercise (60-80% maximum capacity). The primary outcome was the change in cardiorespiratory fitness (peak oxygen uptake, VO2 peak) at 8-week follow-up. Secondary outcomes included cardiovascular disease risk markers, cardiac structure and function, adverse events, and health-related quality of life.Results: At 8 weeks, VO2 peak improved more with HIIT (2.37 mL.kg-1.min-1; SD, 3.11) compared with MISS (1.32 mL.kg-1.min-1; SD, 2.66). After adjusting for age, sex and study site, the difference between arms was 1.04 mL.kg-1.min-1 (95% CI, 0.38 to 1.69; p = 0.002). Only 1 serious adverse event was possibly related to HIIT.Conclusions: In stable CAD, low-volume HIIT improved cardiorespiratory fitness more than MISS by a clinically meaningful margin. Low-volume HIIT is a safe, well tolerated, and clinically effective intervention that produces short-term improvement in cardiorespiratory fitness. It should be considered by all CR programmes as an adjunct or alternative to MISS
Solar Wind Turbulence and the Role of Ion Instabilities
International audienc
- …