78 research outputs found
The prophylactic efficacy of Anatolian propolis in individuals at high risk of COVID-19
OBJECTIVE: No prophylactic
treatment is available for individuals at high risk of
developing COVID-19. This study, which was conducted between December 25, 2020, and January
25, 2021, is one of the first clinical studies to evaluate the efficacy of Anatolian propolis supplement
against COVID-19. The aim was to obtain evidence
on the prophylactic use of Anatolian propolis in individuals at high risk of developing COVID-19.
SUBJECTS AND METHODS: This volunteer-based study was conducted in two centers.
The study involved 209 healthcare professionals (physicians, nurses, medical secretaries) from
Emergency Medicine Department of Medical Faculty of Ataturk University and Emergency Medicine Department of Rize Recep Tayyip Erdogan
University. 204 participants meeting the study criteria were divided into two groups as experimental
group and control group. The experimental group
received 20 drops of BEE’O UP (BEE&YOU) 30%
Propolis drops twice a day during a follow-up period of 1 month. The control group received no
supplement but was followed up. The participants
showing symptoms during the study and all the
participants at the end the study were subjected to
PCR testing.
RESULTS: The evaluation of the results of PCR
testing at the end of the study has shown that 14
participants from the control group and only 2
participants from the experimental group, who received Anatolian propolis supplement, were reported as positive cases.
CONCLUSIONS: It has been found that a
statistically significant protection was induced
against COVID-19 infection in 98% of the experimental group, who received Anatolian propolis,
compared to the control group
Recommended from our members
Effect of gas-to-liquid biosludge on soil properties and alfalfa yields in an arid soil
Soils in Qatar are relatively poor in fertility. Hence, imported top soils and soil enhancing materials are used to improve agricultural yields. Therefore, this work investigated the potential of using gas-to-liquid (GTL) biosludge as a soil conditioner. It sought to increase crop yields in an arid soil with positive environmental footprint in terms of fertilizer application savings, waste utilization and minimization of landfilling. A fodder crop, alfalfa (Medicago sativa), was grown under semi-controlled pot conditions for 12 months. The plant-growth media involved soil, soil + fertilizer, soil + 3% compost, and soil plus five (0.75–12%) biosludge contents. Pertinent properties of the soils, the resulting leachates, and plant growth parameters were analyzed at set periods. Biosludge content generally increased the total porosity and volumetric abundance of different pore types, which in turn affected plant performance, especially the plant height. Alfalfa yield in terms of plant height, aboveground fresh biomass weight and the number of tillers decreased with increasing biosludge content. Mixtures with 0.75–3% biosludge content showed comparable or better plant yield in contrast to the soil, fertilizer and compost controls. The concentration of chemical species in the leachate and plant biomass of biosludge treatments were either lower or similar to the fertilizer and compost controls. Regression modeling identified leachate phosphorus concentrations, soil iron concentration and clay content as the most influential variables for the aforementioned plant performance parameters. The results suggest that GTL biosludge could potentially enhance arid soil properties and improve alfalfa yields
Recommended from our members
Dataset on the influence of gas-to-liquid biosludge on arid soil properties and growth performance of alfalfa
The dataset presented here is related to our research article entitled “Effect of gas-to-liquid biosludge on soil properties and alfalfa yields in an arid soil” [1]. It relates to selected performance parameters of alfalfa grown in an arid soil amended with five different (0.75–12%) gas-to-liquid biosludge contents, and selected properties of the soil determined using several material characterization techniques. A detailed description of the raw data relating to figures on alfalfa performance parameters such as fresh biomass weight, plant height, the number of tillers, and biomass elemental content in the companion article is provided alongside additional data on the number of days to flowering. The underlying data for leachate from the soil and underlying spectra and diffractograms for the proton nuclear magnetic resonance (1H-NMR) and X-ray diffraction (XRD) data, respectively, shown in the companion article are presented. These show changes in the pore structure characteristics and the mineralogical composition of the soil, soil-fertilizer, soil-biosludge, and soil-compost mixtures tested over time. Additional data showing the effect of the amendments on the bulk and particle densities of the soil is presented. The dataset demonstrates the influence of the industrial biosludge on arid soil properties and alfalfa yields (Kogbara et al., [1])
Recommended from our members
Recycling industrial biosludge for buffel grass production in Qatar: impact on soil, leachate and plant characteristics
The agricultural industry in Qatar is highly dependent on using soil enhancing materials due to challenging soil and climatic conditions. Hence, this work investigated the potential of industrial biosludge from the wastewater treatment plant (WWTP) of a Gas-to-Liquids (GTL) plant to enhance an arid soil compared to fertilizer and compost. A fodder crop, buffel grass (Cenchrus ciliaris), was grown in semi-controlled pots containing a typical Qatari agricultural soil and admixtures over a 12-month period. The treatments included soil plus five biosludge percentage contents: 0.75, 1.5, 3, 6 and 12%. These were compared with soil only, soil plus 20-20-20 NPK fertilizer and soil plus 3% compost controls. Analyses of soil physical and chemical properties, the resulting leachate, and plant growth characteristics were conducted at set periods. The results indicate that up to 3% biosludge content led to better plant growth compared to the controls, with the optimum at 1.5% biosludge content for all growth characteristics studied. Biosludge addition to soil increased the volume of different pore types, especially micropores, which enhanced water retention and influenced plant growth. Regression modelling identified leachate Si and Fe concentrations, and biomass K content as the most influential variables for fresh biomass weight, plant height and the number of tillers, respectively. Biosludge addition to the soil around the optimum level did not cause detrimental changes to the resulting leachate and plant biomass. The findings of this work could lead to minimization of biosludge landfilling and allow for savings in fertilizers and irrigation water in arid regions
Recommended from our members
Dataset comparing the growth of fodder crops and soil structure dynamics in an industrial biosludge amended arid soil
The dataset in this work compares the response of two fodder crops, alfalfa (Medicago sativa) and buffel grass (Cenchrus ciliaris), to industrial biosludge amendment of an arid soil in the State of Qatar. It also evaluates the response of soil structure parameters in the biosludge-amended soils containing the different fodder crops. The dataset relates to our previously published works detailed subsequently. The underlying data comparing the water storage capacity and pore structure evolution of the planted soils treated with 0.75, 1.5, and 3% biosludge contents, which showed good outcomes in the companion articles, alongside soil only and soil-fertilizer controls, are presented. These are shown in terms of the percentage of irrigation water leached, and variations in the logarithmic mean T2 (i.e., T2LM - a proxy for mean pore size) and cumulative porosity, respectively. Data on plant growth parameters such as the number of days to flowering, plant height, and aboveground fresh biomass weight in individual replicates of the different treatments as a percentage of the soil-fertilizer control are also shown. The dataset shows the different responses of both plants and the planted soils to amendments with industrial biosludge from the wastewater treatment plant of a gas-to-liquid (GTL) plant
Recommended from our members
Biodiversity and ecosystem services on the African continent – What is changing, and what are our options?
International audienceThroughout the world, biodiversity and nature's contributions to people are under threat, with clear changes evident. Biodiversity and ecosystem services have particular value in Africa– yet they are negatively impacted by a range of drivers, including land use and climate change. In this communication, we show evidence of changing biodiversity and ecosystem services in Africa, as well as the current most significant drivers of change. We then consider five plausible futures for the African continent, each underlain by differing assumptions. In three out of the five futures under consideration, negative impacts on biodiversity and ecosystem services are likely to persist. Those two plausible futures prioritizing environment and sustainability, however, are shown as the most likely paths to achieving long term development objectives without compromising the continent's biodiversity and ecosystem services. Such a finding shows clearly that achievement of such objectives cannot be separated from full recognition of the value of such services
Landscape of mutations in early stage primary cutaneous melanoma: An InterMEL study
It is unclear why some melanomas aggressively metastasize while others remain indolent. Available studies employing multi-omic profiling of melanomas are based on large primary or metastatic tumors. We examine the genomic landscape of early-stage melanomas diagnosed prior to the modern era of immunological treatments. Untreated cases with Stage II/III cutaneous melanoma were identified from institutions throughout the United States, Australia and Spain. FFPE tumor sections were profiled for mutation, methylation and microRNAs. Preliminary results from mutation profiling and clinical pathologic correlates show the distribution of four driver mutation sub-types: 31% BRAF; 18% NRAS; 21% NF1; 26% Triple Wild Type. BRAF mutant tumors had younger age at diagnosis, more associated nevi, more tumor infiltrating lymphocytes, and fewer thick tumors although at generally more advanced stage. NF1 mutant tumors were frequent on the head/neck in older patients with severe solar elastosis, thicker tumors but in earlier stages. Triple Wild Type tumors were predominantly male, frequently on the leg, with more perineural invasion. Mutations in TERT, TP53, CDKN2A and ARID2 were observed often, with TP53 mutations occurring particularly frequently in the NF1 sub-type. The InterMEL study will provide the most extensive multi-omic profiling of early-stage melanoma to date. Initial results demonstrate a nuanced understanding of the mutational and clinicopathological landscape of these early-stage tumors
InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma
INTRODUCTION: We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids' quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium. METHODS: Following a pre-established protocol, participating centers ship formalin-fixed paraffin embedded (FFPE) tissue sections to Memorial Sloan Kettering Cancer Center for the centralized handling, dermatopathology review and histology-guided coextraction of RNA and DNA. Samples are distributed for evaluation of somatic mutations using next gen sequencing (NGS) with the MSK-IMPACTTM assay, methylation-profiling (Infinium MethylationEPIC arrays), and miRNA expression (Nanostring nCounter Human v3 miRNA Expression Assay). RESULTS: Sufficient material was obtained for screening of miRNA expression in 683/685 (99%) eligible melanomas, methylation in 467 (68%), and somatic mutations in 560 (82%). In 446/685 (65%) cases, aliquots of RNA/DNA were sufficient for testing with all three platforms. Among samples evaluated by the time of this analysis, the mean NGS coverage was 249x, 59 (18.6%) samples had coverage below 100x, and 41/414 (10%) failed methylation QC due to low intensity probes or insufficient Meta-Mixed Interquartile (BMIQ)- and single sample (ss)- Noob normalizations. Six of 683 RNAs (1%) failed Nanostring QC due to the low proportion of probes above the minimum threshold. Age of the FFPE tissue blocks (p<0.001) and time elapsed from sectioning to co-extraction (p = 0.002) were associated with methylation screening failures. Melanin reduced the ability to amplify fragments of 200bp or greater (absent/lightly pigmented vs heavily pigmented, p<0.003). Conversely, heavily pigmented tumors rendered greater amounts of RNA (p<0.001), and of RNA above 200 nucleotides (p<0.001). CONCLUSION: Our experience with many archival tissues demonstrates that with careful management of tissue processing and quality control it is possible to conduct multi-omic studies in a complex multi-institutional setting for investigations involving minute quantities of FFPE tumors, as in studies of early-stage melanoma. The study describes, for the first time, the optimal strategy for obtaining archival and limited tumor tissue, the characteristics of the nucleic acids co-extracted from a unique cell lysate, and success rate in downstream applications. In addition, our findings provide an estimate of the anticipated attrition that will guide other large multicenter research and consortia
- …