11 research outputs found

    The growth of supermassive black holes fed by accretion disks

    Full text link
    Supermassive black holes are probably present in the centre of the majority of the galaxies. There is a consensus that these exotic objects are formed by the growth of seeds either by accreting mass from a circumnuclear disk and/or by coalescences during merger episodes. The mass fraction of the disk captured by the central object and the related timescale are still open questions, as well as how these quantities depend on parameters like the initial mass of the disk or the seed or on the angular momentum transport mechanism. This paper is addressed to these particular aspects of the accretion disk evolution and of the growth of seeds. The time-dependent hydrodynamic equations were solved numerically for an axi-symmetric disk in which the gravitational potential includes contributions both from the central object and from the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. The present simulations indicate that seeds capture about a half of the initial disk mass, a result weakly dependent on model parameters. The timescales required for accreting 50% of the disk mass are in the range 130-540 Myr, depending on the adopted parameters. These timescales permit to explain the presence of bright quasars at z ~ 6.5. Moreover, at the end of the disk evolution, a "torus-like" geometry develops, offering a natural explanation for the presence of these structures in the central regions of AGNs, representing an additional support to the unified model.Comment: 10 pages, 7 figures. Accepted for publication by Astronomy and Astrophysic

    A SOFTWARE PACKAGE FOR OPTIMAL CONTROL DECISIONS IN LARGE SCALE SYSTEMS

    No full text

    Optimal Decisions on Complex Infrastructure Systems

    No full text

    Molecular analysis of two FMRFamide-encoding transcripts expressed during the development of the tropical abalone haliotis asinina

    No full text
    FMRFamide-related peptides (FaRPs) are involved in numerous neural functions across the animal kingdom and serve as important models for understanding the evolution of neuropeptides. Gastropod molluscs have proved to be particularly useful foci for such studies, but the developmental expression of FaRPs and the evolution of specific transcripts for different peptides are unclear within the molluscs. Here we show that FaRPs are encoded by two transcripts that appear to be splice variants of a single gene in the abalone, Haliotis asinina, which represents the basal vetigastropods. Has-FMRF1 comprises 1,438 nucleotides and encodes a precursor protein of 329 amino acids that can potentially produce two copies of FLRFamide, one copy each of TLAGDSFLRFamide, QFYRIamide, SDPDLDDVIRASLLAYSLDDSPNN, and SVATAPVEAKAVEAGNKDIE, and 13 copies of FMRFamide. The second 1,241-nucleotide transcript, Has-FMRF2, encodes a 206-amino acid precursor protein with single copies of FLRFamide and FMRFamide along with such extended forms as NFGEPFLRFamide, FDSYEDKALRFamide, and NGWLHFamide, in addition to SDPGEDMLKSILLRGAPSNNGLQY and DTUDETTUNDNAHSRQ. Both transcripts are present early in life and are expressed in different but overlapping patterns within the developing larval nervous system. Mass spectrometry and immunocytochemistry demonstrate that FaRPs are cleaved from larger precursors and localize to the developing nervous system. Our results confirm previous evidence that FaRPs are expressed early and potentially play many roles during molluscan development and suggest that the last common ancestor to living gastropods used alternative splicing of an FMRFamide gene to generate a diversity of FaRPs in spatially restricted patterns in the nervous system
    corecore