27 research outputs found

    Differential distribution of stathmin and SCG10 in developing neurons in culture.

    No full text
    The neuron-specific protein SCG10 and the ubiquitous protein stathmin are two members of a family of microtubule-destabilizing factors that may regulate microtubule dynamics in response to extracellular signals. To gain insight into the function of these proteins in the nervous system, we have compared their intracellular distribution in cortical neurons developing in culture. We have used double-immunofluorescence microscopy with specific antibodies for stathmin and SCG10 in combination with antibodies for axonal, microtubule, and synaptic marker proteins. Stathmin and SCG10 were coexpressed in individual neurons. While both proteins were highly expressed in developing cultures during differentiation, their subcellular localization was strikingly different. Stathmin showed a cytosolic distribution, mainly in cell bodies, whereas SCG10 strongly labeled the growth cones of axons and dendrites. During neurite outgrowth, SCG10 appeared as a single concentrated spot in a region of the growth cone where the microtubules are known to be particularly dynamic. Disassembly of labile microtubules by nocodazole caused a dispersal of the SCG10 staining into punctate structures, indicating that its subcellular localization is microtubule-dependent. Upon maturation and synapse formation, the levels of both stathmin and SCG10 decreased to become undetectable. These observations demonstrate that the expression of both proteins is associated with neurite outgrowth and suggest that they perform their roles in this process in distinct subcellular compartments

    Activity-dependent phosphorylation of SNAP-25 in hippocampal organotypic cultures.

    No full text
    Synaptosomal-associated protein of 25 kDa (SNAP-25) is thought to play a key role in vesicle exocytosis and in the control of transmitter release. However, the precise mechanisms of action as well as the regulation of SNAP-25 remain unclear. Here we show by immunoprecipitation that activation of protein kinase C (PKC) by phorbol esters results in an increase in SNAP-25 phosphorylation. In addition, immunochemical analysis of two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels shows that SNAP-25 focuses as three or four distinct spots in the expected range of molecular weight and isoelectric point. Changing the phosphorylation level of the protein by incubating the slices in the presence of either a PKC agonist (phorbol 12,13-dibutyrate) or antagonist (chelerythrine) modified the distribution of SNAP-25 among these spots. Phorbol 12,13-dibutyrate increased the intensity of the spots with higher molecular weight and lower isoelectric point, whereas chelerythrine produced the opposite effect. This effect was specific for regulators of PKC, as agonists of other kinases did not produce similar changes. Induction of long-term potentiation, a property involved in learning mechanisms, and production of seizures with a GABA(A) receptor antagonist also increased the intensity of the spots with higher molecular weight and lower isoelectric point. This effect was prevented by the PKC inhibitor chelerythrine. We conclude that SNAP-25 can be phosphorylated in situ by PKC in an activity-dependent manner

    Identification of functional marker proteins in the mammalian growth cone

    No full text
    Identification of proteins in the mammalian growth cone has the potential to advance our understanding of this critical regulator of neuronal growth and formation of neural circuit; however, to date, only one growth cone marker protein, GAP-43, has been reported. Here, we successfully used a proteomic approach to identify 945 proteins present in developing rat forebrain growth cones, including highly abundant, membrane-associated and actin-associated proteins. Almost 100 of the proteins appear to be highly enriched in the growth cone, as determined by quantitative immunostaining, and for 17 proteins, the results of RNAi suggest a role in axon growth. Most of the proteins we identified have not previously been implicated in axon growth and thus their identification presents a significant step forward, providing marker proteins and candidate neuronal growth-associated proteins

    DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex

    Get PDF
    Background: The Coloboma mouse carries a ~2 cM deletion encompassing the SNAP25 gene and has a hyperactive phenotype similar to that of ADHD. Such mice are 3 fold more active compared to their control littermates. Genetic association studies support a role for allelic variants of the human SNAP25 gene in predisposing to ADHD. Methods/Principal Findings: We performed association analysis across the SNAP25 gene in 1,107 individuals (339 ADHD trios). To assess the functional relevance of the SNAP25-ADHD associated allele, we performed quantitative PCR on post-mortem tissue derived from the inferior frontal gyrus of 89 unaffected adults. Significant associations with the A allele of SNP rs362990 (χ = 10, p-corrected = 0.019, OR = 1.5) and three marker haplotypes (rs6108461, rs362990 and rs362998) were observed. Furthermore, a significant additive decrease in the expression of the SNAP25 transcript as a function of the risk allele was also observed. This effect was detected at the haplotype level, where increasing copies of the ADHD-associated haplotype reduced the expression of the transcript. Conclusions: Our data show that DNA variation at SNAP25 confers risk to ADHD and reduces the expression of the transcript in a region of the brain that is critical for the regulation of attention and inhibition
    corecore