243 research outputs found

    Aluminium-26 production in low- and intermediate-mass binary systems

    Full text link
    Aluminium-26 is a radioactive isotope which can be synthesized within asymptotic giant branch (AGB) stars, primarily through hot bottom burning. Studies exploring 26^{26}Al production within AGB stars typically focus on single-stars; however, observations show that low- and intermediate-mass stars commonly exist in binaries. We use the binary population synthesis code binary_c to explore the impact of binary evolution on 26^{26}Al yields at solar metallicity both within individual AGB stars and a low/intermediate-mass stellar population. We find the key stellar structural condition achieving most 26^{26}Al overproduction is for stars to enter the thermally-pulsing AGB (TP-AGB) phase with small cores relative to their total masses, allowing those stars to spend abnormally long times on the TP-AGB compared to single-stars of identical mass. Our population with a binary fraction of 0.75 has an 26^{26}Al weighted population yield increase of 25%25\% compared to our population of only single-stars. Stellar-models calculated from the Mt Stromlo/Monash Stellar Structure Program, which we use to test our results from binary_c and closely examine the interior structure of the overproducing stars, support our binary_c results only when the stellar envelope gains mass after core-He depletion. Stars which gain mass before core-He depletion still overproduce 26^{26}Al, but to a lesser extent. This introduces some physical uncertainty into our conclusions as 55%55\% of our 26^{26}Al overproducing stars gain envelope mass through stellar wind accretion onto pre-AGB objects. Our work highlights the need to consider binary influence on the production of 26^{26}Al.Comment: 20 pages, 17 figures, and 6 tables. This article has been accepted for publication in MNRAS Published by Oxford University Press on behalf of the Royal Astronomical Societ

    Entertainment R&D for Defense

    Get PDF
    IEEE CG&A, January/February 2003, pp.28-36.Accepted/Published Paper (Refereed

    Local orthorhombicity in the magnetic C4C_4 phase of the hole-doped iron-arsenide superconductor Sr1x_{1-x}Nax_{x}Fe2_2As2_2

    Full text link
    We report temperature-dependent pair distribution function measurements of Sr1x_{1-x}Nax_{x}Fe2_2As2_2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C4C_4 phase. Quantitative refinements indicate that the instantaneous local structure in the C4C_4 phase is comprised of fluctuating orthorhombic regions with a length scale of \sim2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C4C_4 phase and the neighboring C2C_2 and superconducting phases

    Viability of novae as sources of Galactic lithium

    Full text link
    Of all the light elements, the evolution of lithium (Li) in the Milky Way is perhaps the most difficult to explain. Li is difficult to synthesize and is easily destroyed, making most stellar sites unsuitable for producing Li in sufficient quantities to account for the proto-solar abundance. For decades, novae have been proposed as a potential explanation to this 'Galactic Li problem', and the recent detection of 7Be in the ejecta of multiple nova eruptions has breathed new life into this theory. In this work, we assess the viability of novae as dominant producers of Li in the Milky Way. We present the most comprehensive treatment of novae in a galactic chemical evolution code to date, testing theoretical- and observationally-derived nova Li yields by integrating metallicity-dependent nova ejecta profiles computed using the binary population synthesis code binary c with the galactic chemical evolution code OMEGA+. We find that our galactic chemical evolution models which use observationally-derived Li yields account for the proto-solar Li abundance very well, while models relying on theoretical nova yields cannot reproduce the proto-solar observation. A brief exploration of physical uncertainties including single-stellar yields, the metallicity resolution of our nova treatment, common-envelope physics, and nova accretion efficiencies indicates that this result is robust to physical assumptions. Scatter within the observationally-derived Li yields in novae is identified as the primary source of uncertainty, motivating further observations of 7Be in nova ejecta.Comment: Accepted for publication in ApJL 28/7/202

    Potential gains in life expectancy from reducing amenable mortality among people diagnosed with serious mental illness in the United Kingdom.

    Get PDF
    BACKGROUND: To estimate the potential gain in life expectancy from addressing modifiable risk factors for all-cause mortality (excluding suicide and deaths from accidents or violence) across specific serious mental illness (SMI) subgroups, namely schizophrenia, schizoaffective disorders, and bipolar disorders in a Western population. METHODS: We have used relative risks from recent meta-analyses to estimate the population attribution fraction (PAF) due to specific modifiable risk factors known to be associated with all-cause mortality within SMI. The potential gain in life expectancy at birth, age 50 and age 65 years were assessed by estimating the combined effect of modifiable risk factors from different contextual levels (behavioural, healthcare, social) and accounting for the effectiveness of existing interventions tackling these factors. Projections for annual gain in life expectancy at birth during a two-decade was estimated using the Annual Percentage Change (APC) formula. The predicted estimates were based on mortality rates for year 2014-2015. RESULTS: Based on the effectiveness of existing interventions targeting these modifiable risk factors, we estimated potential gain in life expectancy at birth of four (bipolar disorders), six (schizoaffective disorders), or seven years (schizophrenia). The gain in life expectancy at age 50 years was three (bipolar disorders) or five (schizophrenia and schizoaffective disorders) years. The projected gain in life expectancy at age 65 years was three (bipolar disorders) or four (schizophrenia and schizoaffective disorders) years. CONCLUSIONS: The implementation of existing interventions targeting modifiable risk factors could narrow the current mortality gap between the general and the SMI populations by 24% (men) to 28% (women). These projections represent ideal circumstances and without the limitation of overestimation which often comes with PAFs

    A Revised Design for Microarray Experiments to Account for Experimental Noise and Uncertainty of Probe Response

    Get PDF
    Background Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Results Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. Conclusion The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations

    Report from the conference, ‘identifying obstacles to applying big data in agriculture’

    Get PDF
    Data-centric technology has not undergone widespread adoption in production agriculture but could address global needs for food security and farm profitability. Participants in the U.S. Department of Agriculture (USDA) National Institute for Food and Agriculture (NIFA) funded conference, “Identifying Obstacles to Applying Big Data in Agriculture,” held in Houston, TX, in August 2018, defined detailed scenarios in which on-farm decisions could benefit from the application of Big Data. The participants came from multiple academic fields, agricultural industries and government organizations and, in addition to defining the scenarios, they identified obstacles to implementing Big Data in these scenarios as well as potential solutions. This communication is a report on the conference and its outcomes. Two scenarios are included to represent the overall key findings in commonly identified obstacles and solutions: “In-season yield prediction for real-time decision-making”, and “Sow lameness.” Common obstacles identified at the conference included error in the data, inaccessibility of the data, unusability of the data, incompatibility of data generation and processing systems, the inconvenience of handling the data, the lack of a clear return on investment (ROI) and unclear ownership. Less common but valuable solutions to common obstacles are also noted

    Holographic GB gravity in arbitrary dimensions

    Full text link
    We study the properties of the holographic CFT dual to Gauss-Bonnet gravity in general D5D \ge 5 dimensions. We establish the AdS/CFT dictionary and in particular relate the couplings of the gravitational theory to the universal couplings arising in correlators of the stress tensor of the dual CFT. This allows us to examine constraints on the gravitational couplings by demanding consistency of the CFT. In particular, one can demand positive energy fluxes in scattering processes or the causal propagation of fluctuations. We also examine the holographic hydrodynamics, commenting on the shear viscosity as well as the relaxation time. The latter allows us to consider causality constraints arising from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection 3.3 and new appendix B on conformal tensor fields. Added comments on the relation between the central charge appearing in the two-point function and the "central charge" characterizing the entropy density in the discussion. References adde

    Spinneret: Aiding Creative Ideation through Non-Obvious Concept Associations

    Full text link
    Mind mapping is a popular way to explore a design space in creative thinking exercises, allowing users to form associations between concepts. Yet, most existing digital tools for mind mapping focus on authoring and organization, with little support for addressing the challenges of mind mapping such as stagnation and design fixation. We present Spinneret, a functional approach to aid mind mapping by providing suggestions based on a knowledge graph. Spinneret uses biased random walks to explore the knowledge graph in the neighborhood of an existing concept node in the mind map, and provides "suggestions" for the user to add to the mind map. A comparative study with a baseline mind-mapping tool reveals that participants created more diverse and distinct concepts with Spinneret, and reported that the suggestions inspired them to think of ideas they would otherwise not have explored.Comment: ACM CHI 202

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore