181 research outputs found

    On Theoretical Models of Gene Expression Evolution with Random Genetic Drift and Natural Selection

    Get PDF
    The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference.In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1) our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2) cytological constraints can be explicitly formulated to describe long-term evolution; (3) the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances.The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations

    BodyMap-Xs: anatomical breakdown of 17 million animal ESTs for cross-species comparison of gene expression

    Get PDF
    BodyMap-Xs () is a database for cross-species gene expression comparison. It was created by the anatomical breakdown of 17 million animal expressed sequence tag (EST) records in DDBJ using a sorting program tailored for this purpose. In BodyMap-Xs, users are allowed to compare the expression patterns of orthologous and paralogous genes in a coherent manner. This will provide valuable insights for the evolutionary study of gene expression and identification of a responsive motif for a particular expression pattern. In addition, starting from a concise overview of the taxonomical and anatomical breakdown of all animal ESTs, users can navigate to obtain gene expression ranking of a particular tissue in a particular animal. This method may lead to the understanding of the similarities and differences between the homologous tissues across animal species. BodyMap-Xs will be automatically updated in synchronization with the major update in DDBJ, which occurs periodically

    The Effects of Exercise Training on Obesity-Induced Dysregulated Expression of Adipokines in White Adipose Tissue

    Get PDF
    Obesity is recognized as a risk factor for lifestyle-related diseases such as type 2 diabetes and cardiovascular disease. White adipose tissue (WAT) is not only a static storage site for energy; it is also a dynamic tissue that is actively involved in metabolic reactions and produces humoral factors, such as leptin and adiponectin, which are collectively referred to as adipokines. Additionally, because there is much evidence that obesity-induced inflammatory changes in WAT, which is caused by dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein 1, contribute to the development of insulin resistance, WAT has attracted special attention as an organ that causes diabetes and other lifestyle-related diseases. Exercise training (TR) not only leads to a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the inflammation-related adipokines in WAT. Therefore, TR is widely used as a tool for preventing and improving lifestyle-related diseases. This review outlines the impact of TR on the expression and secretory response of adipokines in WAT

    α‑Glucosidase inhibitor miglitol attenuates glucose fluctuation, heart rate variability and sympathetic activity in patients with type 2 diabetes and acute coronary syndrome : a multicenter randomized controlled (MACS) study

    Get PDF
    Background: Little is known about clinical associations between glucose fluctuations including hypoglycemia, heart rate variability (HRV), and the activity of the sympathetic nervous system (SNS) in patients with acute phase of acute coronary syndrome (ACS). This pilot study aimed to evaluate the short-term effects of glucose fluctuations on HRV and SNS activity in type 2 diabetes mellitus (T2DM) patients with recent ACS. We also examined the effect of suppressing glucose fluctuations with miglitol on these variables. Methods: This prospective, randomized, open-label, blinded-endpoint, multicenter, parallel-group comparative study included 39 T2DM patients with recent ACS, who were randomly assigned to either a miglitol group (n = 19) or a control group (n = 20). After initial 24-h Holter electrocardiogram (ECG) (Day 1), miglitol was commenced and another 24-h Holter ECG (Day 2) was recorded. In addition, continuous glucose monitoring (CGM) was performed throughout the Holter ECG. Results: Although frequent episodes of subclinical hypoglycemia (≤4.44 mmo/L) during CGM were observed on Day 1 in the both groups (35% of patients in the control group and 31% in the miglitol group), glucose fluctuations were decreased and the minimum glucose level was increased with substantial reduction in the episodes of subclinical hypoglycemia to 7.7% in the miglitol group on Day 2. Holter ECG showed that the mean and maximum heart rate and mean LF/HF were increased on Day 2 in the control group, and these increases were attenuated by miglitol. When divided 24-h time periods into day-time (0700–1800 h), night-time (1800–0000 h), and bed-time (0000–0700 h), we found increased SNS activity during day-time, increased maximum heart rate during night-time, and glucose fluctuations during bed-time, which were attenuated by miglitol treatment. Conclusions: In T2DM patients with recent ACS, glucose fluctuations with subclinical hypoglycemia were associated with alterations of HRV and SNS activity, which were mitigated by miglitol, suggesting that these pathological relationships may be a residual therapeutic target in such patients

    DDBJ launches a new archive database with analytical tools for next-generation sequence data

    Get PDF
    The DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) has collected and released 1 701 110 entries/1 116 138 614 bases between July 2008 and June 2009. A few highlighted data releases from DDBJ were the complete genome sequence of an endosymbiont within protist cells in the termite gut and Cap Analysis Gene Expression tags for human and mouse deposited from the Functional Annotation of the Mammalian cDNA consortium. In this period, we started a novel user announcement service using Really Simple Syndication (RSS) to deliver a list of data released from DDBJ on a daily basis. Comprehensive visualization of a DDBJ release data was attempted by using a word cloud program. Moreover, a new archive for sequencing data from next-generation sequencers, the ‘DDBJ Read Archive’ (DRA), was launched. Concurrently, for read data registered in DRA, a semi-automatic annotation tool called the ‘DDBJ Read Annotation Pipeline’ was released as a preliminary step. The pipeline consists of two parts: basic analysis for reference genome mapping and de novo assembly and high-level analysis of structural and functional annotations. These new services will aid users’ research and provide easier access to DDBJ databases

    The Human Anatomic Gene Expression Library (H-ANGEL), the H-Inv integrative display of human gene expression across disparate technologies and platforms

    Get PDF
    The Human Anatomic Gene Expression Library (H-ANGEL) is a resource for information concerning the anatomical distribution and expression of human gene transcripts. The tool contains protein expression data from multiple platforms that has been associated with both manually annotated full-length cDNAs from H-InvDB and RefSeq sequences. Of the H-Inv predicted genes, 18 897 have associated expression data generated by at least one platform. H-ANGEL utilizes categorized mRNA expression data from both publicly available and proprietary sources. It incorporates data generated by three types of methods from seven different platforms. The data are provided to the user in the form of a web-based viewer with numerous query options. H-ANGEL is updated with each new release of cDNA and genome sequence build. In future editions, we will incorporate the capability for expression data updates from existing and new platforms. H-ANGEL is accessible at http://www.jbirc.aist.go.jp/hinv/h-angel/

    Management of Hepatocellular Carcinoma in Japan : JSH Consensus Statements and Recommendations 2021 Update

    Get PDF
    The Clinical Practice Manual for Hepatocellular Carcinoma was published based on evidence confirmed by the Evidence-based Clinical Practice Guidelines for Hepatocellular Carcinoma along with consensus opinion among a Japan Society of Hepatology (JSH) expert panel on hepatocellular carcinoma (HCC). Since the JSH Clinical Practice Guidelines are based on original articles with extremely high levels of evidence, expert opinions on HCC management in clinical practice or consensus on newly developed treatments are not included. However, the practice manual incorporates the literature based on clinical data, expert opinion, and real-world clinical practice currently conducted in Japan to facilitate its use by clinicians. Alongside each revision of the JSH Guidelines, we issued an update to the manual, with the first edition of the manual published in 2007, the second edition in 2010, the third edition in 2015, and the fourth edition in 2020, which includes the 2017 edition of the JSH Guideline. This article is an excerpt from the fourth edition of the HCC Clinical Practice Manual focusing on pathology, diagnosis, and treatment of HCC. It is designed as a practical manual different from the latest version of the JSH Clinical Practice Guidelines. This practice manual was written by an expert panel from the JSH, with emphasis on the consensus statements and recommendations for the management of HCC proposed by the JSH expert panel. In this article, we included newly developed clinical practices that are relatively common among Japanese experts in this field, although all of their statements are not associated with a high level of evidence, but these practices are likely to be incorporated into guidelines in the future. To write this article, coauthors from different institutions drafted the content and then critically reviewed each other’s work. The revised content was then critically reviewed by the Board of Directors and the Planning and Public Relations Committee of JSH before publication to confirm the consensus statements and recommendations. The consensus statements and recommendations presented in this report represent measures actually being conducted at the highest-level HCC treatment centers in Japan. We hope this article provides insight into the actual situation of HCC practice in Japan, thereby affecting the global practice pattern in the management of HCC

    Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases

    Get PDF
    Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model “Mitomouse” (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial
    corecore