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Abstract

Detailed analysis of human gene expression data reveals several patterns of relationship between transcript freq
abundance rank. In muscle and liver, organs composed primarily of a homogeneous population of differentiated c
obey Zipf’s law. In cell lines, epithelial tissue and compiled transcriptome data, only high-rankers deviate from it. We p
an evolutionary process model during which expression level changes stochastically proportionally to its intensity, pro
novel interpretation of transcriptome data and of evolutionary constraints on gene expression.To cite this article: O. Ogasawara
et al., C. R. Biologies 326 (2003).
 2003 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Loi de Zipf et transcriptomes humains : explication avec un modèle évolutif. L’analyse détaillée de données d’express
des gènes humains révèle plusieurs types de relations entre la fréquence des transcrits et leur rang d’abondance. Da
et le foie, organes composés principalement d’une population de cellules différenciées, elles obéissent à la loi de Zipf.
lignées cellulaires, le tissu épithélial et des compilations de données de transcriptomes, seuls les transcrits des prem
en dévient. Nous proposons un modèle de processus évolutif lors duquel le niveau d’expression change de manière s
proportionnellement à son intensité, permettant une nouvelle interprétation des données du transcriptome et des c
évolutives sur l’expression génique.Pour citer cet article : O. Ogasawara et al., C. R. Biologies 326 (2003).
 2003 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Relationship between transcript frequency and
abundance

In the genetics–linguistics analogy, a transcripto
is a text in which a life plan is ‘expressed’ with a g
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nomic vocabulary. By analyzing SAGE tag [1] and′
EST [2] data, we found that the human transcripto
follows the statistical constraint, characteristic for n
ural language, known as Zipf’s law [3]. In a corp
of texts, Zipf’s law dictates that the frequency of ea
word,f , and its abundance rank,r (r = 1 for the most
frequent word,r = 2 for the second most freque
word, and so on) are related according to the pow
behalf of Académie des sciences.
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data were

an SAGE
ibraries.
Fig. 1. Log frequency log rank plot (Zipf’s plot) of transcriptome data. The frequency of occurrence(f ) of each transcript in 3′ EST and SAGE
tag (∗) collections representing various transcriptomes were plotted against the abundance rank(r). The broken line representsf = 0.1/r .
(a) Organs with homogeneous populations of differentiated cells. For example, the most abundant transcript (r = 1) in liver, albumin, occurred
about 12% in EST data for liver. Gene names forr = 1–6 in liver are given. (b) Cell lines and complex tissues. (c) Compiled data from 51
human EST sets, 31 mouse EST sets, and 64 SAGE tag sets. Gene names forr = 1–6 in compiled human transcriptome (3′ EST) are given.
(d) Occurrence of 3′ EST in normalized libraries. The total tag occurrence for each data set is given in parentheses. The frequency
obtained fromhttp://bodymap.ims.u-tokyo.ac.jp/datasets/index.html(3′ EST) andftp://ncbi.nlm.nih.gov/pub/sage/(SAGE). The data for liver
are combined data for two human liver libraries. The frequencies of total SAGE tags are obtained from re-analysis of all available hum
tags. Clustering 3′ ESTs for two representative normalized libraries in dbEST, 1N1B and 2NbHM, generated the data for normalized l
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law f ∞. r−k , with k ≈. 1 for all languages [4]. In a
double logarithmic axis plot, such a relation is rep
sented by a linear dependence off as a function of
r with a slope of−1. In muscle and liver, the organ
composed primarily of a homogeneous population
differentiated cells, the frequency,f , of each transcrip
and its abundance rank,r, distributed very close to
the linef = 0.1/r (Fig. 1a). In other sources, such

http://bodymap.ims.u-tokyo.ac.jp/datasets/index.html
ftp://ncbi.nlm.nih.gov/pub/sage/
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cell lines and epithelial tissue, only high-rankers(r <

100), which comprise less than 1% of the transcr
variety, deviated from this trend (Fig. 1b). Reducti
of tissue-specific transcripts in cell lines and their
lution in complex cell populations explains such d
viation, at least in part. Compiling data for differe
transcriptomes affected the plot similarly (Fig. 1c).
terestingly, the plot appeared universal to the comp
transcriptomes at enough multiplicities, regardless
the data sources. In normalized libraries [5], the Zi
like structure was lost completely (Fig. 1d).

2. An evolutionary model of expression level
variation

In transcript abundance, the slope(|k|) is very close
to 1, similarly to the classical example in natu
language, which suggests the underlying stocha
process that robustly dictates the value of the sl
as well as the linearity in log–log plot. We kno
that the abundance of each transcript is dictated
the DNA sequence on the genome known as
elements and the mutations in these elements c
alteration in its abundance. Accordingly it is natural
assume that the abundance distribution results from
evolutionary process. We propose here an evolutio
model that explains linearity in log–log plot and t
slope(= 1) with only simple assumptions as follow
(1) the mutations in cis-elements cause a stocha
change in the expression level that is proportiona
the original level of expression; (2) at the initial sta
the genome contains from a small number of ge
with an arbitrary distribution of gene expression. T
gene number gradually increases over generation
gaining new genes by gene duplication [6].

The first assumption can be written as the relat
fi(t + 1) = λi(t)fi(t), wherefi(t) is the expression
level of genei at generationt , andλi(t) is a random
variable extracted from a time-independent distri
tion π(λ).

After T generations, we obtain:

(1)logfi(T ) = logfi(0) +
T∑

j=0

logλi(j)

If the random variableλi(t) is independent and iden
tically distributed with finite mean and variance, t
central limit theorem says that the distribution∑T
j=0 logFi(j) converges to a normal distributio

For sufficiently largeT , fi(T ) is well approximated
by the lognormal distribution which is extremely sim
ilar in shape to power-law distribution.

As generations pass, the deviation of the dist
ution becomes large, and expression level of so
genes becomes very small. If they become lower t
the minimal level, then the genes are regarded as
appeared.

Because we cannot determine the initial distr
ution fi(0) of formula (1), a priori, the model (1)
should be extended slightly. At the initial state, t
genome contains a small number of genes with an
bitrary distribution of gene expression. The geno
grows over generations by gaining new genes by g
duplication. While the number of gene(N) increases
the total number of mRNA molecules in a cell(W)

also increases, according to the following formula:

∆N

∆W
= N(t + 1) − N(t)∑

fi(t + 1) − ∑
fi(t)

= K

whereK is a constant positive value smaller than 1
By simulation of this process, we show that tra

scriptome distribution converges to Zipf’s law (Fig. 2
The evolutionary model is essentially the analogy
the city size growth model, proposed by Blank a
Solomon (2000) [7]. In their city size model, the pop
lation growth(∆W) is the cause of the increase in t
number of cities(∆N). In our evolutionary model, in
crease in total mRNA(∆W) is driven by the growth
of gene number(∆N).

3. Interpretation of transcriptome data

Zipf’s law predicts various important numeric
features of the transcriptome. According to this la
50% of transcripts in a differentiated cell repres
only 83 mRNA species. Because the accumulated
of f for all transcripts is 1, the predicted number
different transcripts in a cell is restricted to 12 36
These values are in accordance with the classical v
of an average transcriptome where less than 100 g
are responsible for 50% of the cellular mRNA co
tent and about 10 000 mRNA species comprise the
[8]. Assuming that the plot for a compiled transcr
tome (Fig. 1c) remains unchanged after further co
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eneration).
rs were set
to
Fig. 2. Simulated emergrence of Zipf-like distribution in transcriptome with evolutionary model. (a) Distribution after 50 generations, (b) after
100 generations, (c) after 200 generations. The continuous line is the Zipf’s law function (f = a/r). The distribution converged to Zipf’s law
within a few hundred generations. The number of genes at initial state was 50, and the number was increased exponentially (2% par g
But the initial state and the exponent parameter values have no substantial influence on the result of the distribution. Other paramete
asK = 0.001,π(λ) was set as the normal distributionN(µ,σ2) with µ = 1.0, σ2 = 0.05. Again, the resultant distribution was not sensitive
the exact value of the parameters.
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pilation of different transcriptomes (
∑10 000

r=1 f = 0.70
for SAGE tags), the predicted total number of tra
scripts in a whole body is approximately 210 000. T
further benefit of the discovery of such a constra
is that it may eventually assist researchers in des
ing experiments with tissue mRNA and interpreti
results from them. In transcript profiling by DNA m
croarray, for example, the relation off andr can be
considered as the relation between sensitivity of tr
script detection and the number of hybridizing signa

Applicability of Zipf’s law has been reported no
only for natural languages but also in several soc
economical and behavioral phenomena, such as
size and income [3], and clicks in World Wide We
surfing [9]. Although there have been many controv
sies, in essence, three kinds of mathematical mo
have survived to explain such phenomena: The
dom network model [10] for WWW, Mandelbrot’s op
timization model [11] for linguistical Zipf’s law and
multiplicative model applied to city size [7]. Recent
power-law distributions were also found in wide va
ety of genomic properties, such as populations of p
tein families [6,12–14], protein folds [6,14], pseud
genes [14] and protein domains [15,16], although
slope is not always close to 1 in these cases.
After this work was submitted, two papers we
published reporting that Zipf’s law holds in a wid
variety of eukaryotes, supporting our evolutiona
model [17,18]. In one of these papers, Furusawa
Kaneko [18] applied a random network model
mRNA production to explain Zipf’s distribution, in
which they assumed that transcriptional regulation
be modeled as an analogy of a catalytic reaction.

References

[1] V.E. Velculescu, S.L. Madden, L. Zhang, A.E. Lash, J. Y
C. Rago, A. Lal, C.J. Wang, G.A. Beaudry, K.M. Ciriell
B.P. Cook, M.R. Dufault, A.T. Ferguson, Y. Gao, T.C. H
H. Hermeking, S.K. Hiraldo, P.M. Hwang, M.A. Lope
H.F. Luderer, B. Mathews, J.M. Petroziello, K. Polya
L. Zawel, W. Zhang, X. Zhang, W. Zhou, F.G. Halusk
J. Jen, S. Sukumar, G.M. Landes, G.J. Riggins, B. Vo
stein, K.W. Kinzler, Analysis of human transcriptomes, Nat
Genet. 23 (1999) 387–388.

[2] T. Hishiki, S. Kawamoto, S. Morishita, K. Okubo, BodyMa
a human and mouse gene expression database, Nucleic
Res. 28 (2000) 136–138.

[3] G.K. Zipf, Human Behavior and the Principle of Least Effo
Addison-Wesley, Cambridge, UK, 1949.

[4] J.L. Casti, Bell curves and monkey languages, Complexit
(1995) 12–15.

[5] L.D. Hillier, G. Lennon, M. Becker, M.F. Bonaldo, B. Chia
pelli, S. Chissoe, N. Dietrich, T. DuBuque, A. Favello, W. Gis



O. Ogasawara et al. / C. R. Biologies 326 (2003) 1097–1101 1101

,
ge,
a-
tags

ld
ary

n,
h a
79–

w

,
80

ale

i-

ring
tein

on
15

ein,
er-

ies,

a,
le

ol.

in
3.

ics
ells,

ys.
M. Hawkins, M. Hultman, T. Kucaba, M. Lacy, M. Le, N. Le
E. Mardis, B. Moore, M. Morris, J. Parsons, C. Pran
L. Rifkin, T. Rohlfing, K. Schellenberg, M. Marra, Gener
tion and analysis of 280 000 human expressed sequence
Genome Res. 6 (1996) 806–828.

[6] J. Qian, N.M. Luscombe, M. Gerstein, Protein family and fo
occurrence in genomes: power-law behaviour and evolution
model, J. Mol. Biol. 313 (2001) 673–681.

[7] A. Blank, S. Solomon, Power laws in cities populatio
financimarkets and internet sites (scaling in systems wit
variable number of components), Physica A 287 (2000) 2
288.

[8] B. Lewin, Genes VI 659–60, Oxford University Press, Ne
York, 1997.

[9] B.A. Huberman, P.L.T. Pirolli, J.E. Pitkow, R.M. Lukose
Strong regularities in World Wide Web surfing, Science 2
(1998) 95–97.

[10] A.L. Barabási, R. Albert, H. Jeong, Mean-field theory for sc
free random networks, Physica A 272 (1999) 173–187.

[11] B. Mandelbrot, in: Symposium on Applications of Commun
cation Theory, 1953, pp. 486–502.
,

[12] M. Gerstein, A structural census of genomes: compa
bacterial, eukaryotic, and archaeal genomes in terms of pro
structure, J. Mol. Biol. 274 (1997) 562–576.

[13] M.A. Huynen, E. van Nimwegen, The frequency distributi
of gene family sizes in complete genomes, Mol. Biol. Evol.
(1998) 583–589.

[14] N.M. Luscombe, J. Qian, Z. Zhang, T. Johnson, M. Gerst
The dominance of the population by a selected few: pow
law behaviour applies to a wide variety of genomic propert
Genome Biol. 3 (2002) 1–7.

[15] G.P. Karev, Y.I. Wolf, A.Y. Rzhetsky, F.S. Berezovskay
E.V. Koonin, Birth and death of protein domains: a simp
model of evolution explains power law behavior, BMC Ev
Biol. 2 (2002) 218–223.

[16] E.V. Koonin, Y.I. Wolf, G.P. Karev, The structure of the prote
universe and genome evolution, Nature 420 (2002) 218–22

[17] V.A. Kuznetsov, G.D. Knott, R.F. Bonner, General statist
of stochastic process of gene expression in eukaryotic c
Genetics 161 (2002) 1321–1332.

[18] C. Furusawa, K. Kaneko, Zipf’s law in gene expression, Ph
Rev. Lett. 90 (2003) 088102 Epub.


	Zipf's law and human transcriptomes: an explanation  with an evolutionary model
	Relationship between transcript frequency and abundance
	An evolutionary model of expression level variation
	Interpretation of transcriptome data
	References


