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Abstract

Detailed analysis of human gene expression data reveals several patterns of relationship between transcript frequency an
abundance rank. In muscle and liver, organs composed primarily of a homogeneous population of differentiated cells, they
obey Zipf’'s law. In cell lines, epithelial tissue and compiled transcriptome data, only high-rankers deviate from it. We propose
an evolutionary process model during which expression level changes stochastically proportionally to its intensity, providing a
novel interpretation of transcriptome data and of evolutionary constraints on gene expressitathisarticle: O. Ogasawara
etal., C. R. Biologies 326 (2003).
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Résumé

Loi deZipf et transcriptomes humains: explication avec un modée évolutif. L'analyse détaillée de données d'expression
des genes humains réveéle plusieurs types de relations entre la fréquence des transcrits et leur rang d’abondance. Dans le mus
et le foie, organes composés principalement d’une population de cellules différenciées, elles obéissent a la loi de Zipf. Dans de:
lignées cellulaires, le tissu épithélial et des compilations de données de transcriptomes, seuls les transcrits des premiers ran
en dévient. Nous proposons un modéle de processus évolutif lors duquel le niveau d’expression change de maniére stochastiqt
proportionnellement a son intensité, permettant une nouvelle interprétation des données du transcriptome et des contrainte
évolutives sur I'expression géniqueour citer cet article: O. Ogasawara et al., C. R. Biologies 326 (2003).
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1. Relationship between transcript frequency and nomic vocabulary. By analyzing SAGE tag [1] and 3
abundance EST [2] data, we found that the human transcriptome
follows the statistical constraint, characteristic for nat-
In the genetics—linguistics analogy, a transcriptome ural language, known as Zipf's law [3]. In a corpus
is a text in which a life plan is ‘expressed’ with a ge-  of texts, Zipf's law dictates that the frequency of each
word, f, and its abundance rank(r = 1 for the most
~* Corresponding author. frequent word,r = 2 for the second most frequent
E-mail address: kousaku@genomatrix.com (K. Okubo). word, and so on) are related according to the power-
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Fig. 1. Log frequency log rank plot (Zipf's plot) of transcriptome data. The frequency of occur¢gnad each transcript in"EST and SAGE

tag (x) collections representing various transcriptomes were plotted against the abundange.raie broken line represengs= 0.1/r.

(a) Organs with homogeneous populations of differentiated cells. For example, the most abundant trarsdr)ph (iver, albumin, occurred

about 12% in EST data for liver. Gene namesfet 1-6 in liver are given.lf) Cell lines and complex tissues) (Compiled data from 51

human EST sets, 31 mouse EST sets, and 64 SAGE tag sets. Gene nameslfds in compiled human transcriptome ST) are given.

(d) Occurrence of 3EST in normalized libraries. The total tag occurrence for each data set is given in parentheses. The frequency data were
obtained fromhttp://bodymap.ims.u-tokyo.ac.jp/datasets/index.(@hEST) andftp://ncbi.nlm.nih.gov/pub/sagéSAGE). The data for liver

are combined data for two human liver libraries. The frequencies of total SAGE tags are obtained from re-analysis of all available human SAGE
tags. Clustering’3ESTs for two representative normalized libraries in dbEST, 1N1B and 2NbHM, generated the data for normalized libraries.

law foor~*, with k & 1 for all languages [4]. Ina  composed primarily of a homogeneous population of
double logarithmic axis plot, such a relation is repre- differentiated cells, the frequency, of each transcript
sented by a linear dependence fofas a function of and its abundance rank, distributed very close to
r with a slope of—1. In muscle and liver, the organs the line f = 0.1/r (Fig. 1a). In other sources, such as


http://bodymap.ims.u-tokyo.ac.jp/datasets/index.html
ftp://ncbi.nlm.nih.gov/pub/sage/
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cell lines and epithelial tissue, only high-rankeérs< central limit theorem says that the distribution of
100), which comprise less than 1% of the transcript Z,T:o log F;(j) converges to a normal distribution.
variety, deviated from this trend (Fig. 1b). Reduction For sufficiently largeT, f;(T) is well approximated
of tissue-specific transcripts in cell lines and their di- by the lognormal distribution which is extremely sim-
lution in complex cell populations explains such de- ilar in shape to power-law distribution.
viation, at least in part. Compiling data for different As generations pass, the deviation of the distrib-
transcriptomes affected the plot similarly (Fig. 1c). In- ution becomes large, and expression level of some
terestingly, the plot appeared universal to the compiled genes becomes very small. If they become lower than
transcriptomes at enough multiplicities, regardless of the minimal level, then the genes are regarded as dis-
the data sources. In normalized libraries [5], the Zipf- appeared.
like structure was lost completely (Fig. 1d). Because we cannot determine the initial distrib-
ution f;(0) of formula (1), a priori, the model (1)
should be extended slightly. At the initial state, the
2. An evolutionary model of expression level genome contains a small number of genes with an ar-
variation bitrary distribution of gene expression. The genome
grows over generations by gaining new genes by gene

In transcript abundance, the slok|) is very close  duplication. While the number of geri@/) increases,
to 1, similarly to the classical example in natural the total number of mMRNA molecules in a cé¢lV)
language, which suggests the underlying stochastic also increases, according to the following formula:
proceslf thaihroblystly .?icyat(?s thle vallu? ?Ivthle; slope AN NG +1) — N@)
as well as the linearity in log-log plot. We know —— =
that the abundance of each transcript is dictated by AW 3 fit+ D=2 fi@)
the DNA sequence on the genome known as cis- wherek is a constant positive value smaller than 1.
elements and the mutations in these elements cause By simulation of this process, we show that tran-
alteration in its abundance. Accordingly it is natural to  scriptome distribution converges to Zipf's law (Fig. 2).
assume that the abundance distribution results from anThe evolutionary model is essentially the analogy of
evolutionary process. We propose here an evolutional the city size growth model, proposed by Blank and
model that explains linearity in log—log plot and the Solomon (2000) [7]. In their city size model, the popu-
slope(= 1) with only simple assumptions as follows: lation growth(AW) is the cause of the increase in the
(1) the mutations in cis-elements cause a stochastic number of citieg AN). In our evolutionary model, in-
change in the expression level that is proportional to crease in total MRNAAW) is driven by the growth
the original level of expression; (2) at the initial state, 0f gene numbe(AN).
the genome contains from a small number of genes
with an arbitrary distribution of gene expression. The
gene number gradually increases over generations by3. Interpretation of transcriptome data
gaining new genes by gene duplication [6].

The first assumption can be written as the relation ~ Zipf's law predicts various important numerical
fi(t +1) = A;(t) f: (1), where f; (¢) is the expression  features of the transcriptome. According to this law,
level of genei at generation, and; (¢) is a random 50% of transcripts in a differentiated cell represent
variable extracted from a time-independent distribu- only 83 mRNA species. Because the accumulated sum
tionw(A). of f for all transcripts is 1, the predicted humber of

After T generations, we obtain: different transcripts in a cell is restricted to 12 367.

, These values are in accordance with the classical view
i of an average transcriptome where less than 100 genes
log fi(T') =log /i (0) + Zlogki ) (1) are respongible for 58% of the cellular mRNA c%n-
=0 tent and about 10 000 mRNA species comprise the rest
If the random variable,; (r) is independent and iden-  [8]. Assuming that the plot for a compiled transcrip-
tically distributed with finite mean and variance, the tome (Fig. 1¢) remains unchanged after further com-
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Fig. 2. Simulated emergrence of Zipf-like distribution in transcriptome with evolutionary ma@jdigtribution after 50 generationy) after

100 generationscy after 200 generations. The continuous line is the Zipf's law functjpe=(a/r). The distribution converged to Zipf’'s law

within a few hundred generations. The number of genes at initial state was 50, and the number was increased exponentially (2% par generation)
But the initial state and the exponent parameter values have no substantial influence on the result of the distribution. Other parameters were s
asK =0.001,7 (1) was set as the normal distributiov( ., 02) with u = 1.0, 2 =0.05. Again, the resultant distribution was not sensitive to

the exact value of the parameters.

pilation of different transcriptome$ (-2 = 0.70 After this work was submitted, two papers were
for SAGE tags), the predicted total number of tran- published reporting that Zipf's law holds in a wide
scripts in a whole body is approximately 210 000. The variety of eukaryotes, supporting our evolutionary
further benefit of the discovery of such a constraint model [17,18]. In one of these papers, Furusawa and
is that it may eventually assist researchers in design- Kaneko [18] applied a random network model in
ing experiments with tissue mRNA and interpreting MRNA production to explain Zipf's distribution, in
results from them. In transcript profiling by DNA mi- which they assumed that transcriptiongl regulgtion can
croarray, for example, the relation gfandr can be be modeled as an analogy of a catalytic reaction.
considered as the relation between sensitivity of tran-
script detection and the number of hybridizing signals. References
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