1,744 research outputs found
Variability of Internally Generated Turbulence in an Estuary, from 100 Days of Continuous Observations
We present detailed observations of internally generated turbulence in a sheared, stratified natural flow, as well as an analysis of the external factors leading to its generation and temporal variability. Multi-month time series of vertical profiles of velocity, acoustic backscatter (0.5 Hz), and turbulence parameters were collected with two moored acoustic Doppler current profilers (ADCPs) in the Hudson River estuary, and estuary-long transects of water density were collected 30 times. ADCP backscatter is used for visualization of coherent turbulent structures and evaluation of surface wave biases to the turbulence measurements. Benefits of the continuous long-term turbulence record include our capturing: (1) the seasonality of turbulence due to changing riverflow, (2) hysteresis in stratification and turbulence over the fortnightly cycle of tidal range, and (3) intermittent events such as breaking internal waves. Internal mixing layers (IMLs) are defined as turbulent regions above the logarithmic velocity layer, and the bottom boundary layer (BBL) is defined as the continuously turbulent range of heights above the bed. A cross-correlation analysis reveals how IML and BBL turbulence vary with stratification and external forcing from tidal range, river flow, and winds. Turbulence in both layers is maximal at spring tide and minimal when most stratified, with one exception IML turbulence at a site with changing channel depth and width is maximal at times of maximum stratification and freshwater input
Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale
Soil organic carbon (SOC) plays a major role in the global carbon budget. It
can act as a source or a sink of atmospheric carbon, thereby possibly
influencing the course of climate change. Improving the tools that model the
spatial distributions of SOC stocks at national scales is a priority, both for
monitoring changes in SOC and as an input for global carbon cycles studies. In
this paper, we compare and evaluate two recent and promising modelling
approaches. First, we considered several increasingly complex boosted
regression trees (BRT), a convenient and efficient multiple regression model
from the statistical learning field. Further, we considered a robust
geostatistical approach coupled to the BRT models. Testing the different
approaches was performed on the dataset from the French Soil Monitoring
Network, with a consistent cross-validation procedure. We showed that when a
limited number of predictors were included in the BRT model, the standalone BRT
predictions were significantly improved by robust geostatistical modelling of
the residuals. However, when data for several SOC drivers were included, the
standalone BRT model predictions were not significantly improved by
geostatistical modelling. Therefore, in this latter situation, the BRT
predictions might be considered adequate without the need for geostatistical
modelling, provided that i) care is exercised in model fitting and validating,
and ii) the dataset does not allow for modelling of local spatial
autocorrelations, as is the case for many national systematic sampling schemes
The Effect of Harbor Developments on Future High-Tide Flooding in Miami, Florida
Little is known about the effect of tidal changes on minor flooding in most lagoonal estuaries, often due to a paucity of historical records that predate landscape changes. In this contribution, we recover and apply archival tidal range data to show that the mean tidal range in Miami, Florida, has almost doubled since 1900, from 0.32 to 0.61 m today. A likely cause is the dredging of a ∼15 m deep, 150 m wide harbor entrance channel beginning in the early 20th century, which changed northern Biscayne Bay from a choked inlet system to one with a tidal range close to coastal conditions. To investigate the implications for high-tide flooding, we develop and validate a tidal-inference based methodology that leverages estimates of pre-1900 tidal range to obtain historical tidal predictions and constituents. Next, water level predictions that represent historical and modern water level variations are projected forward in time using different sea level rise scenarios. Results show that the historical increase in tidal range hastened the occurrence of present-day flooding, and that the total integrated number of days with high-tide floods in the 2020–2100 period will be approximately O(103) more under present day tides compared to pre-development conditions. These results suggest that tidal change may be a previously under-appreciated factor in the increasing prevalence of high-tide flooding in lagoonal estuaries, and our methods open the door to improving our understanding of other heavily-altered systems
EVOLUTION OF THE STRATOSPHERIC TEMPERATURE AND CHEMICAL COMPOSITION OVER ONE TITANIAN YEAR
Since the Voyager 1 (V1) flyby in 1980, Titans exploration from space and the ground has been ongoing for more than a full revolution of Saturn around the Sun (one Titan year or 29.5 Earth years was completed in May 2010). In this study we search for temporal variations affecting Titans atmospheric thermal and chemical structure within that year. We process Cassini CIRS data taken during the Titan flybys from 2006-2013 and compare them to the 1980 V1IRIS spectra (re-analyzed here). We also consider data from Earth-based and -orbiting observatories (such as from the ISO, re-visited). When we compare the CIRS 2010 and the IRIS data we find limited inter-annual variations, below the 25 or35 levels for the lower and middle, or the high latitudes, respectively. A return to the 1980 stratospheric temperatures and abundances is generally achieved from 50degN to 50degS, indicative of the solar radiation being the dominating energy source at 10 AU, as for the Earth, as predicted by GCM and photochemical models. However, some exceptions exist among the most complex hydrocarbons (C4H2 and C3H4), especially in the North. In the Southern latitudes, since 2012, we see a trend for an increase of several trace gases, possibly indicative of a seasonal atmospheric reversal. At the Northern latitudes we found enhanced abundances around the period of the northern spring equinox in mid-2009 (as in Bampasidis et al. 2012), which subsequently decreased (from 2010-2012) returning to values similar to those found in the V1 epoch a Titanian year before
Calibration of the Herschel SPIRE Fourier Transform Spectrometer
The Herschel SPIRE instrument consists of an imaging photometric camera and
an imaging Fourier Transform Spectrometer (FTS), both operating over a
frequency range of 450-1550 GHz. In this paper, we briefly review the FTS
design, operation, and data reduction, and describe in detail the approach
taken to relative calibration (removal of instrument signatures) and absolute
calibration against standard astronomical sources. The calibration scheme
assumes a spatially extended source and uses the Herschel telescope as primary
calibrator. Conversion from extended to point-source calibration is carried out
using observations of the planet Uranus. The model of the telescope emission is
shown to be accurate to within 6% and repeatable to better than 0.06% and, by
comparison with models of Mars and Neptune, the Uranus model is shown to be
accurate to within 3%. Multiple observations of a number of point-like sources
show that the repeatability of the calibration is better than 1%, if the
effects of the satellite absolute pointing error (APE) are corrected. The
satellite APE leads to a decrement in the derived flux, which can be up to ~10%
(1 sigma) at the high-frequency end of the SPIRE range in the first part of the
mission, and ~4% after Herschel operational day 1011. The lower frequency range
of the SPIRE band is unaffected by this pointing error due to the larger beam
size. Overall, for well-pointed, point-like sources, the absolute flux
calibration is better than 6%, and for extended sources where mapping is
required it is better than 7%.Comment: 20 pages, 18 figures, accepted for publication in MNRA
The impact of a large object with Jupiter in July 2009
On 2009 July 19, we observed a single, large impact on Jupiter at a
planetocentric latitude of 55^{\circ}S. This and the Shoemaker-Levy 9 (SL9)
impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed.
The 2009 impact had an entry trajectory opposite and with a lower incidence
angle than that of SL9. Comparison of the initial aerosol cloud debris
properties, spanning 4,800 km east-west and 2,500 km north-south, with those
produced by the SL9 fragments, and dynamical calculations of pre-impact orbit,
indicate that the impactor was most probably an icy body with a size of 0.5-1
km. The collision rate of events of this magnitude may be five to ten times
more frequent than previously thought. The search for unpredicted impacts, such
as the current one, could be best performed in 890-nm and K (2.03-2.36 {\mu}m)
filters in strong gaseous absorption, where the high-altitude aerosols are more
reflective than Jupiter's primary cloud.Comment: 15 pages, 5 figure
Time invariance violating nuclear electric octupole moments
The existence of a nuclear electric octupole moment (EOM) requires both
parity and time invariance violation. The EOMs of odd nuclei that are
induced by a particular T- and P-odd interaction are calculated. We compare
such octupole moments with the collective EOMs that can occur in nuclei having
a static octupole deformation. A nuclear EOM can induce a parity and time
invariance violating atomic electric dipole moment, and the magnitude of this
effect is calculated. The contribution of a nuclear EOM to such a dipole moment
is found, in most cases, to be smaller than that of other mechanisms of atomic
electric dipole moment production.Comment: Uses RevTex, 25 page
Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium
We report x-ray reflectivity (XR) and small angle off-specular diffuse
scattering (DS) measurements from the surface of liquid Indium close to its
melting point of C. From the XR measurements we extract the surface
structure factor convolved with fluctuations in the height of the liquid
surface. We present a model to describe DS that takes into account the surface
structure factor, thermally excited capillary waves and the experimental
resolution. The experimentally determined DS follows this model with no
adjustable parameters, allowing the surface structure factor to be deconvolved
from the thermally excited height fluctuations. The resulting local electron
density profile displays exponentially decaying surface induced layering
similar to that previously reported for Ga and Hg. We compare the details of
the local electron density profiles of liquid In, which is a nearly free
electron metal, and liquid Ga, which is considerably more covalent and shows
directional bonding in the melt. The oscillatory density profiles have
comparable amplitudes in both metals, but surface layering decays over a length
scale of \AA for In and \AA for Ga. Upon controlled
exposure to oxygen, no oxide monolayer is formed on the liquid In surface,
unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.
- …