38 research outputs found

    Optimal Data Partitioning and a Test Case for Ray-Finned Fishes (Actinopterygii) Based on Ten Nuclear Loci

    Get PDF
    Data partitioning, the combined phylogenetic analysis of homogeneous blocks of data, is a common strategy used to accommodate heterogeneities in complex multilocus data sets. Variation in evolutionary rates and substitution patterns among sites are typically addressed by partitioning data by gene, codon position, or both. Excessive partitioning of the data, however, could lead to overparameterization; therefore, it seems critical to define the minimum numbers of partitions necessary to improve the overall fit of the model. We propose a new method, based on cluster analysis, to find an optimal partitioning strategy for multilocus protein-coding data sets. A heuristic exploration of alternative partitioning schemes, based on Bayesian and maximum likelihood (ML) criteria, is shown here to produce an optimal number of partitions. We tested this method using sequence data of 10 nuclear genes collected from 52 ray-finned fish (Actinopterygii) and four tetrapods. The concatenated sequences included 7995 nucleotide sites maximally split into 30 partitions defined a priori based on gene and codon position. Our results show that a model based on only 10 partitions defined by cluster analysis performed better than partitioning by both gene and codon position. Alternative data partitioning schemes also are shown to affect the topologies resulting from phylogenetic analysis, especially when Bayesian methods are used, suggesting that overpartitioning may be of major concern. The phylogenetic relationships among the major clades of ray-finned fish were assessed using the best data-partitioning schemes under ML and Bayesian methods. Some significant results include the monophyly of “Holostei” (Amia and Lepisosteus), the sister-group relationships between (1) esociforms and salmoniforms and (2) osmeriforms and stomiiforms, the polyphyly of Perciformes, and a close relationship of cichlids and atherinomorphs

    A Practical Approach to Phylogenomics: The Phylogeny of Ray-Finned Fish (Actinopterygii) as a Case Study

    Get PDF
    Background: Molecular systematics occupies one of the central stages in biology in the genomic era, ushered in by unprecedented progress in DNA technology. The inference of organismal phylogeny is now based on many independent genetic loci, a widely accepted approach to assemble the tree of life. Surprisingly, this approach is hindered by lack of appropriate nuclear gene markers for many taxonomic groups especially at high taxonomic level, partially due to the lack of tools for efficiently developing new phylogenetic makers. We report here a genome-comparison strategy to identifying nuclear gene markers for phylogenetic inference and apply it to the ray-finned fishes – the largest vertebrate clade in need of phylogenetic resolution. Results: A total of 154 candidate molecular markers – relatively well conserved, putatively single-copy gene fragments with long, uninterrupted exons – were obtained by comparing whole genome sequences of two model organisms, Danio rerio and Takifugu rubripes. Experimental tests of 15 of these (randomly picked) markers on 36 taxa (representing two-thirds of the ray-finned fish orders) demonstrate the feasibility of amplifying by PCR and directly sequencing most of these candidates from whole genomic DNA in a vast diversity of fish species. Preliminary phylogenetic analyses of sequence data obtained for 14 taxa and 10 markers (total of 7,872 bp for each species) are encouraging, suggesting that the markers obtained will make significant contributions to future fish phylogenetic studies. Conclusion: We present a practical approach that systematically compares whole genome sequences to identify single-copy nuclear gene markers for inferring phylogeny. Our method is an improvement over traditional approaches (e.g., manually picking genes for testing) because it uses genomic information and automates the process to identify large numbers of candidate makers. This approach is shown here to be successful for fishes, but also could be applied to other groups of organisms for which two or more complete genome sequences exist, which has important implications for assembling the tree of life

    A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study

    Get PDF
    BACKGROUND: Molecular systematics occupies one of the central stages in biology in the genomic era, ushered in by unprecedented progress in DNA technology. The inference of organismal phylogeny is now based on many independent genetic loci, a widely accepted approach to assemble the tree of life. Surprisingly, this approach is hindered by lack of appropriate nuclear gene markers for many taxonomic groups especially at high taxonomic level, partially due to the lack of tools for efficiently developing new phylogenetic makers. We report here a genome-comparison strategy to identifying nuclear gene markers for phylogenetic inference and apply it to the ray-finned fishes – the largest vertebrate clade in need of phylogenetic resolution. RESULTS: A total of 154 candidate molecular markers – relatively well conserved, putatively single-copy gene fragments with long, uninterrupted exons – were obtained by comparing whole genome sequences of two model organisms, Danio rerio and Takifugu rubripes. Experimental tests of 15 of these (randomly picked) markers on 36 taxa (representing two-thirds of the ray-finned fish orders) demonstrate the feasibility of amplifying by PCR and directly sequencing most of these candidates from whole genomic DNA in a vast diversity of fish species. Preliminary phylogenetic analyses of sequence data obtained for 14 taxa and 10 markers (total of 7,872 bp for each species) are encouraging, suggesting that the markers obtained will make significant contributions to future fish phylogenetic studies. CONCLUSION: We present a practical approach that systematically compares whole genome sequences to identify single-copy nuclear gene markers for inferring phylogeny. Our method is an improvement over traditional approaches (e.g., manually picking genes for testing) because it uses genomic information and automates the process to identify large numbers of candidate makers. This approach is shown here to be successful for fishes, but also could be applied to other groups of organisms for which two or more complete genome sequences exist, which has important implications for assembling the tree of life

    Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits

    Get PDF
    Background: The subfamily Stevardiinae is a diverse and widely distributed clade of freshwater fishes from South and Central America, commonly known as “tetras” (Characidae). The group was named “clade A” when first proposed as a monophyletic unit of Characidae and later designated as a subfamily. Stevardiinae includes 48 genera and around 310 valid species with many species presenting inseminating reproductive strategy. No global hypothesis of relationships is available for this group and currently many genera are listed as incertae sedis or are suspected to be non-monophyletic. Results: We present a molecular phylogeny with the largest number of stevardiine species analyzed so far, including 355 samples representing 153 putative species distributed in 32 genera, to test the group’s monophyly and internal relationships. The phylogeny was inferred using DNA sequence data from seven gene fragments (mtDNA: 12S, 16S and COI; nuclear: RAG1, RAG2, MYH6 and PTR). The results support the Stevardiinae as a monophyletic group and a detailed hypothesis of the internal relationships for this subfamily. Conclusions: A revised classification based on the molecular phylogeny is proposed that includes seven tribes and also defines monophyletic genera, including a resurrected genus Eretmobrycon, and new definitions for Diapoma, Hemibrycon, Bryconamericus sensu stricto, and Knodus sensu stricto, placing some small genera as junior synonyms. Inseminating species are distributed in several clades suggesting that reproductive strategy is evolutionarily labile in this group of fishes

    Transcriptomic differentiation underlying marine‐to‐freshwater transitions in the South American silversides Odontesthes argentinensis and O. bonariensis (Atheriniformes)

    Get PDF
    Salinity gradients are critical habitat determinants for freshwater organisms. Silverside fishes in the genus Odontesthes have recently and repeatedly transitioned from marine to freshwater habitats, overcoming a strong ecological barrier. Genomic and transcriptomic changes involved in this kind of transition are only known for a few model species. We present new data and analyses of gene expression and microbiome composition in the gills of two closely related silverside species, marine O. argentinensis and freshwater O. bonariensis and find more than three thousand transcripts differentially expressed, with osmoregulatory/ion transport genes and immune genes showing very different expression patterns across species. Interspecific differences also involve more than one thousand transcripts with nonsynonymous SNPs in the coding sequences, most of which were not differentially expressed. In addition to characterizing gill transcriptomes from wild‐caught marine and freshwater fishes, we test experimentally the response to salinity increases by O. bonariensis collected from freshwater habitats. Patterns of expression in gill transcriptomes of O. bonariensis exposed to high salinity do not resemble O. argentinensis mRNA expression, suggesting lack of plasticity for adaptation to marine conditions in this species. The diversity of functions associated with both the differentially expressed set of transcripts and those with sequence divergence plus marked microbiome differences suggest that multiple abiotic and biotic factors in marine and freshwater habitats are driving transcriptomic differences between these species

    Evolution of subtype C HIV-1 Env in a slowly progressing Zambian infant

    Get PDF
    BACKGROUND: Given the high prevalence of mother to child infection, the development of a better understanding of African subtype C HIV-1 transmission and natural evolution is of significant importance. In this study, we genotypically and phenotypically characterized subtype C viruses isolated over a 67-month follow-up period from an in utero-infected Zambian infant. Changes in genotype and phenotype were correlated to alterations of the host humoral immune response. RESULTS: A comparison of baseline maternal and infant samples indicated that the infant sequences are monophyletic and contain a fraction of the diversity observed in the mother. This finding suggests that selective transmission occurred from mother to child. Peaks in infant HIV-1 Env genetic diversity and divergence were noted at 48 months, but were not correlated with changes in co-receptor usage or syncytia phenotype. Phylogenetic analyses revealed an accumulation of mutations over time, as well as the reappearance of ancestral lineages. In the infant C2-V4 region of Env, neither the median number of putative N-glycosylation sites or median sequence length showed consistent increases over time. The infant possessed neutralizing antibodies at birth, but these decreased in effectiveness or quantity with time. De novo humoral responses were detected in the child after 12 months, and corresponded with an increase in Env diversity. CONCLUSION: Our study demonstrates a correlation between HIV-1 Env evolution and the humoral immune response. There was an increase in genetic diversification in the infant viral sequences after 12 months, which coincided with increases in neutralizing antibody titers. In addition, episodes of viral growth and successive immune reactions in the first 5–6 years were observed in this slow progressor infant with delayed onset of AIDS. Whether this pattern is typical of slow progressing subtype C HIV-1 infected infant needs to be further substantiated

    Characterization of HIV-1 subtype C envelope glycoproteins from perinatally infected children with different courses of disease

    Get PDF
    BACKGROUND: The causal mechanisms of differential disease progression in HIV-1 infected children remain poorly defined, and much of the accumulated knowledge comes from studies of subtype B infected individuals. The applicability of such findings to other subtypes, such as subtype C, remains to be substantiated. In this study, we longitudinally characterized the evolution of the Env V1–V5 region from seven subtype C HIV-1 perinatally infected children with different clinical outcomes. We investigated the possible influence of viral genotype and humoral immune response on disease progression in infants. RESULTS: Genetic analyses revealed that rapid progressors (infants that died in the first year of life) received and maintained a genetically homogeneous viral population throughout the disease course. In contrast, slow progressors (infants that remained clinically asymptomatic for up to four years) also exhibited low levels variation initially, but attained higher levels of diversity over time. Genetic assessment of variation, as indicated by dN/dS, showed that particular regions of Env undergo selective changes. Nevertheless, the magnitude and distribution of these changes did not segregate slow and rapid progressors. Longitudinal trends in Env V1–V5 length and the number of potential N-glycosylation sites varied among patients but also failed to discriminate between fast and slow progressors. Viral isolates from rapid progressors and slow progressors displayed no significant growth properties differences in vitro. The neutralizing activity in maternal and infant baseline plasma also varied in its effectiveness against the initial virus from the infants but did not differentiate rapid from slow progressors. Quantification of the neutralization susceptibility of the initial infant viral isolates to maternal baseline plasma indicated that both sensitive and resistant viruses were transmitted, irrespective of disease course. We showed that humoral immunity, whether passively acquired or developed de novo in the infected children, varied but was not predictive of disease progression. CONCLUSION: Our data suggest that neither genetic variation in env, or initial maternal neutralizing activity, or the level of passively acquired neutralizing antibody, or the level of the de novo neutralization response appear to be linked to differences in disease progression in subtype C HIV-1 infected children

    Mega-Bites: Extreme jaw forces of living and extinct piranhas (Serrasalmidae)

    Get PDF
    Here, we document in-vivo bite forces recorded from wild piranhas. Integrating this empirical data with allometry, bite simulations, and FEA, we have reconstructed the bite capabilities and potential feeding ecology of the extinct giant Miocene piranha, Megapiranha paranensis. An anterior bite force of 320 N from the black piranha, Serrasalmus rhombeus, is the strongest bite force recorded for any bony fish to date. Results indicate M. paranensis' bite force conservatively ranged from 1240-4749 N and reveal its novel dentition was capable of resisting high bite stresses and crushing vertebrate bone. Comparisons of body size-scaled bite forces to other apex predators reveal S. rhombeus and M. paranensis have among the most powerful bites estimated in carnivorous vertebrates. Our results functionally demonstrate the extraordinary bite of serrasalmid piranhas and provide a mechanistic rationale for their predatory dominance among past and present Amazonian ichthyofaunas

    Fish-T1K (Transcriptomes of 1,000 Fishes) Project: Large-Scale Transcriptome Data for Fish Evolution Studies

    Get PDF
    Ray-finned fishes (Actinopterygii) represent more than 50 % of extant vertebrates and are of great evolutionary, ecologic and economic significance, but they are relatively underrepresented in ‘omics studies. Increased availability of transcriptome data for these species will allow researchers to better understand changes in gene expression, and to carry out functional analyses. An international project known as the “Transcriptomes of 1,000 Fishes” (Fish-T1K) project has been established to generate RNA-seq transcriptome sequences for 1,000 diverse species of ray-finned fishes. The first phase of this project has produced transcriptomes from more than 180 ray-finned fishes, representing 142 species and covering 51 orders and 109 families. Here we provide an overview of the goals of this project and the work done so far

    Cellular and humoral immunogenicity of the mRNA-1273 SARS-CoV-2 vaccine in patients with hematologic malignancies

    Get PDF
    Recent studies have shown a suboptimal humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients diagnosed with hematologic malignancies; however, data about cellular immunogenicity are scarce. The aim of this study was to evaluate both the humoral and cellular immunogenicity 1 month after the second dose of the mRNA-1273 vaccine. Antibody titers were measured by using the Elecsys and LIAISON anti–SARS-CoV-2 S assays, and T-cell response was assessed by using interferon-γ release immunoassay technology. Overall, 76.3% (184 of 241) of patients developed humoral immunity, and the cellular response rate was 79% (184 of 233). Hypogammaglobulinemia, lymphopenia, active hematologic treatment, and anti-CD20 therapy during the previous 6 months were associated with an inferior humoral response. Conversely, age >65 years, active disease, lymphopenia, and immunosuppressive treatment of graft-versus-host disease (GVHD) were associated with an impaired cellular response. A significant dissociation between the humoral and cellular responses was observed in patients treated with anti-CD20 therapy (the humoral response was 17.5%, whereas the cellular response was 71.1%). In these patients, B-cell aplasia was confirmed while T-cell counts were preserved. In contrast, humoral response was observed in 77.3% of patients undergoing immunosuppressive treatment of GVHD, whereas only 52.4% had a cellular response. The cellular and humoral responses to the SARS-CoV-2 mRNA-1273 vaccine in patients with hematologic malignancies are highly influenced by the presence of treatments such as anti-CD20 therapy and immunosuppressive agents. This observation has implications for the further management of these patients.The authors also thank the Cellex Foundation for providing research facilities and equipment and the CERCA Programme/Generalitat de Catalunya for institutional support
    corecore