93 research outputs found
Metabolic-flux dependent regulation of microbial physiology
According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells
A message emerging from development: the repression of mitochondrial β-F1-ATPase expression in cancer
The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/s10863-007-9087-9Mitochondrial research has experienced a considerable boost during the last decade because organelle malfunctioning is in the genesis and/or progression of a vast array of human pathologies including cancer. The renaissance of mitochondria in the cancer field has been promoted by two main facts: (1) the molecular and functional integration of mitochondrial bioenergetics with the execution of cell death and (2) the implementation of 18FDG-PET for imaging and staging of tumors in clinical practice. The latter, represents the bed-side translational development of the metabolic hallmark that describes the bioenergetic phenotype of most cancer cells as originally predicted at the beginning of previous century by Otto Warburg. In this minireview we will briefly summarize how the study of energy metabolism during liver development forced our encounter with Warburg’s postulates and prompted us to study the mechanisms that regulate the biogenesis of mitochondria in the cancer cellThis review article was written while the research activity in the authors’
laboratory was supported by grants from the Ministerio de Sanidad (PI041255),
Educación y Ciencia (SAF2005-4001) and Fundación Mutua Madrileña. The CBMSO
is the recipient of an institutional grant from Fundación Ramón ArecesPeer reviewe
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar ty phimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlyingmechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced inprimary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that [H11011]2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes,upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intra-cellular bacteria andextracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteriacould sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.Ministerio de Economía y Competitividad BIO2010-18885 CSD2008-00013-INTERMODS BIO2010-15023Junta de Andalucía P10-CVI-587
Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in foodprocessing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host’s gastrointestinal tract. Then we dissect host–pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes
A xandarellid artiopodan from Morocco – a middle Cambrian link between soft-bodied euarthropod communities in North Africa and South China
NB. A corrigendum [correction] for this article was published online on 09 May 2017; this has been attached to this article as an additional file. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © The Author(s) 2017. The attached file is the published version of the article
Autophagy and Apoptosis Have a Role in the Survival or Death of Stallion Spermatozoa during Conservation in Refrigeration
Apoptosis has been recognized as a cause of sperm death during cryopreservation and a cause of infertility in humans, however there is no data on its role in sperm death during conservation in refrigeration; autophagy has not been described to date in mature sperm. We investigated the role of apoptosis and autophagy during cooled storage of stallion spermatozoa. Samples from seven stallions were split; half of the ejaculate was processed by single layer centrifugation, while the other half was extended unprocessed, and stored at 5°C for five days. During the time of storage, sperm motility (CASA, daily) and membrane integrity (flow cytometry, daily) were evaluated. Apoptosis was evaluated on days 1, 3 and 5 (active caspase 3, increase in membrane permeability, phosphatidylserine translocation and mitochondrial membrane potential) using flow cytometry. Furthermore, LC3B processing was investigated by western blotting at the beginning and at the end of the period of storage. The decrease in sperm quality over the period of storage was to a large extent due to apoptosis; single layer centrifugation selected non-apoptotic spermatozoa, but there were no differences in sperm motility between selected and unselected sperm. A high percentage of spermatozoa showed active caspase 3 upon ejaculation, and during the period of storage there was an increase of apoptotic spermatozoa but no changes in the percentage of live sperm, revealed by the SYBR-14/PI assay, were observed. LC3B was differentially processed in sperm after single layer centrifugation compared with native sperm. In processed sperm more LC3B-II was present than in non-processed samples; furthermore, in non-processed sperm there was an increase in LC3B-II after five days of cooled storage. These results indicate that apoptosis plays a major role in the sperm death during storage in refrigeration and that autophagy plays a role in the survival of spermatozoa representing a new pro-survival mechanism in spermatozoa not previously described
A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors
[Purpose] Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models.[Experimental Design] Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist.
[Results] We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs.
[Conclusions] This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.This work has been funded by the following grants: Junta de Andalucía [CTS-1406 (R.M. Luque), BIO-0139 (J.P. Castaño)]; Ministerio de Ciencia, Innovación y Universidades [BFU2016-80360-R (J.P. Castaño)] and Instituto de Salud Carlos III, co-funded by European Union [ERDF/ESF, “Investing in your future”: PI16/00264 (R.M. Luque), CP15/00156 (M.D. Gahete) and CIBERobn]. CIBER is an initiative of Instituto de Salud Carlos III
Beneficial Effect of Ursodeoxycholic Acid in Patients with ACOX2 Deficiency-Associated Hypertransaminasemia
Background: A variant (p.Arg225Trp) of peroxisomal acyl-CoA oxidase 2 (ACOX2), involved in bile acid (BA) side-chain shortening, has been associated with unexplained persistent hypertransaminasemia and accumulation of C27-BAs, mainly trihydroxycholestanoic acid (THCA).
Aims: To investigate the prevalence of ACOX2 deficiency-associated hypertransaminasemia (ADAH), its response to ursodeoxycholic acid (UDCA), elucidate its pathophysiological mechanism and identify other inborn errors that could cause this alteration.
Methods & results: Among 33 patients with unexplained hypertransaminasemia from 11 hospitals, and 13 of their relatives, 7 individuals with abnormally high C27-BA levels (>50% of total BAs) were identified by HPLC-MS/MS. The p.Arg225Trp variant was found in homozygosity (exon amplification/sequencing) in 2 patients and 3 family members. Two additional non-related patients were heterozygous carriers of different alleles: c.673C>T (p.Arg225Trp) and c.456_459del (p.Thr154fs). In ADAH patients, impaired liver expression of ACOX2, but not ACOX3, was found (immunohistochemistry). Treatment with UDCA normalized transaminases levels. Incubation of HuH-7 liver cells with THCA, which was efficiently taken up, but not through BA transporters, increased ROS production (flow cytometry), ER stress biomarkers (GRP78, CHOP and XBP1-S/XBP1-U ratio), and BAX¿ expression (RT-qPCR and immunoblot), whereas cell viability was decreased (MTT). THCA-induced cell toxicity was higher than that of major C24-BAs and was not prevented by UDCA. Fourteen predicted ACOX2 variants were generated (site-directed mutagenesis) and expressed in HuH-7 cells. Functional tests to determine their ability to metabolize THCA identified six with the potential to cause ADAH.
Conclusion: Dysfunctional ACOX2 has been found in several patients with unexplained hypertransaminasemia. This condition can be accurately identified by a non-invasive diagnostic strategy based on plasma BA profiling and ACOX2 sequencing. Moreover, UDCA treatment can efficiently attenuate liver damage in these patients.This study was supported by the following
grants: CIBERehd (EHD15PI05/2016);
Fondo de Investigaciones Sanitarias,
Instituto de Salud Carlos III, Spain
(PI19/00819 and PI20/00189), co-funded
by European Regional Development
Fund/European Social Fund, “Investing
in your future”; “Junta de Castilla y León”
(SA074P20); Fundació Marato TV3
(201916–31);
AECC Scientific Foundation
(2017/2020), Spain; and “Centro
Internacional sobre el Envejecimiento”
(OLD-HEPAMARKER,
0348_CIE_6_E),
Spain. We also acknowledge support
from grants PID2019-111669RBI-
100,
PID2020-115055RB-
I00
from Plan
Nacional de I+D funded by the “Agencia
Estatal de Investigación” (AEI) and the
center grant P50AA011999 Southern
California Research Center for ALPD
and Cirrhosis funded by NIAAA/NIH,
as well as support from AGAUR of
the “Generalitat de Catalunya” SGR-2017-
1112,
European Cooperation in
Science & Technology (COST) ACTION
CA17112 Prospective European Drug-Induced
Liver Injury Network. Marta
Alonso-Peña
was the recipient of a
predoctoral fellowship from “Ministerio de
Educación, Cultura y Deporte” (BOE-A-
2015-
9456;
FPU-14/
00214) and a Mobility
Grant for Short Stays from “Ministerio
de Ciencia, Innovación y Universidades”
(EST17/00186). Ricardo Espinosa-Escudero
is the recipient of a predoctoral
fellowship from “Junta de Castilla y
León” and “Fondo Social Europeo”
(EDU/574/2018). The funding sources
were not involved in the research design
or preparation of the articl
A polymeric nanomedicine diminishes inflammatory events in renal tubular cells
The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to
procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models.
In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak
induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-kB activation. Similar to JAK2 kinase inhibitors, QM56
inhibited Tweak-induced NF-kB transcriptional activity and chemokine expression, despite failing to inhibit NF-kB-p65
nuclear translocation and NF-kB DNA binding. QM56 prevented JAK2 activation and NF-kB-p65(Ser536) phosphorylation.
The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-12/2 cells.
In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by downmodulations
of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent
inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as
inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.This work was supported by grants from the Instituto de Salud Carlos III (www.isciii.es), FIS: PI07/0020, CP08/1083, PS09/00447 and ISCIII-RETICS
REDINREN RD 06/0016; Sociedad Española de Nefrología (www.senefro.org). Álvaro Ucero, Sergio Berzal and Carlos Ocaña supported by Fundacion Conchita
Rabago (www.fundacionconchitarabago.net), Alberto Ortiz by the Programa de Intensificación de la Actividad Investigadora in the Sistema Nacional de Salud of
the Instituto de Salud Carlos III and the Agencia ‘‘Pedro Lain Entralgo’’ of the Comunidad de Madrid and CIFRA S-BIO 0283/2006 www.madrid.org/lainentralgo)
and Adrián Ramos, by FIS (Programa Miguel Servet)
- …