4,025 research outputs found

    Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds

    Get PDF
    BACKGROUND: Possession of gas vesicles is generally considered to be advantageous to halophilic archaea: the vesicles are assumed to enable the cells to float, and thus reach high oxygen concentrations at the surface of the brine. RESULTS: We studied the possible ecological advantage of gas vesicles in a dense community of flat square extremely halophilic archaea in the saltern crystallizer ponds of Eilat, Israel. We found that in this environment, the cells' content of gas vesicles was insufficient to provide positive buoyancy. Instead, sinking/floating velocities were too low to permit vertical redistribution. CONCLUSION: The hypothesis that the gas vesicles enable the square archaea to float to the surface of the brines in which they live was not supported by experimental evidence. Presence of the vesicles, which are mainly located close to the cell periphery, may provide an advantage as they may aid the cells to position themselves parallel to the surface, thereby increasing the efficiency of light harvesting by the retinal pigments in the membrane

    Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12.

    Get PDF
    Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner

    Acoustic emission method for defect detection and identification in carbon steel welded joints.

    Get PDF
    Detecting welding defects in industrial equipment (welded joints and built-up structures) is a key aspect in evaluating the probability of failure in different situations. Acoustic emission (AE) is an effective non-destructive detecting technique, and can be a promising application for welding defect detection. This work presents a systematic experimental investigation on using AE technique for detecting and classifying different weld defects in carbon steel joint material. Four certified carbon steel samples were used in this study. A defect free control sample was used as the reference and three samples with induced defects, namely slag, porosity and crack. A pencil lead break (PLB) test was used to generate simulated AE sources on one side of the joint whereas the AE sensor was mounted on the other side to capture AE signals. A total of four experimental arrangements were used to investigate the effect of propagating distance (sensor to source distance) on the ability of AE to detect and identify defects in welds. For each of these arrangements, AE features such as peak amplitude, rise time, decay time, duration, and count numbers along with statistical features such as AE energy, root mean square (RMS) were extracted and analysed. Also, frequency analysis using FFT and wavelet transform were investigated for each weld test specimen for all arrangements. The results show that AE energy, peak amplitude and RMS value can be used to automatically detect and identify the presence of a defect in carbon steel welds. It is concluded that AE has a considerable potential in use in welding inspection to assess the overall structural health and identify defects that can significantly reduce the strength and reliability of welded material and consequently reduce the risk of component's failure

    Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons

    Get PDF
    Recent studies suggest that environmentally induced effects on sperm phenotype can influence offspring phenotype beyond the classic Mendelian inheritance mechanism. However, establishing whether such effects are conveyed purely through ejaculates, independently of maternal environmental effects, remains a significant challenge. Here, we assess whether environmentally induced effects on sperm phenotype affects male reproductive success and offspring fitness. We experimentally manipulated the duration of sperm storage by males, and thus sperm age, in the internally fertilizing fish Poecilia reticulata. We first confirm that sperm ageing influences sperm quality and consequently males reproductive success. Specifically, we show that aged sperm exhibit impaired velocity and are competitively inferior to fresh sperm when ejaculates compete to fertilize eggs. We then used homospermic (noncompetitive) artificial insemination to inseminate females with old or fresh sperm and found that male offspring arising from fertilizations by experimentally aged sperm suffered consistently impaired sperm quality when just sexually mature (four months old) and subsequently as adults (13 months old). Although we have yet to determine whether these effects have a genetic or epigenetic basis, our analyses provide evidence that environmentally induced variation in sperm phenotype constitutes an important source of variation in male reproductive fitness that has far reaching implications for offspring fitness

    Colored Motifs Reveal Computational Building Blocks in the C. elegans Brain

    Get PDF
    Background: Complex networks can often be decomposed into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. However, these structural motifs can only tell one part of the functional story because in this analysis each node and edge is treated on an equal footing. In real networks, two motifs that are topologically identical but whose nodes perform very different functions will play very different roles in the network. Methodology/Principal Findings: Here, we combine structural information derived from the topology of the neuronal network of the nematode C. elegans with information about the biological function of these nodes, thus coloring nodes by function. We discover that particular colorations of motifs are significantly more abundant in the worm brain than expected by chance, and have particular computational functions that emphasize the feed-forward structure of information processing in the network, while evading feedback loops. Interneurons are strongly over-represented among the common motifs, supporting the notion that these motifs process and transduce the information from the sensor neurons towards the muscles. Some of the most common motifs identified in the search for significant colored motifs play a crucial role in the system of neurons controlling the worm's locomotion. Conclusions/Significance: The analysis of complex networks in terms of colored motifs combines two independent data sets to generate insight about these networks that cannot be obtained with either data set alone. The method is general and should allow a decomposition of any complex networks into its functional (rather than topological) motifs as long as both wiring and functional information is available

    Immune adjuvant effect of V. cholerae O1 derived Proteoliposome coadministered by intranasal route with Vi polysaccharide from Salmonella Typhi

    Get PDF
    Proteoliposome derived from Vibrio cholerae O1 (PLc) is a nanoscaled structure obtained by detergent extraction process. Intranasal (i.n) administration of PLc was immunogenic at mucosal and systemic level vs. V. cholerae; however the adjuvant potential of this structure for non-cholera antigens has not been proven yet. The aim of this work was to evaluate the effect of coadministering PLc with the Vi polysaccharide antigen (Poli Vi) of S. Typhi by i.n route. The results showed that Poli Vi coadministered with PLc (PLc+Poli Vi) induce higher IgA response in saliva (p0.05) to that induced in a group of mice immunised by parenteral route with the Cuban anti-typhoid vaccine vax-TyVi®, although this vaccine did not induce mucosal response. In conclusion, this work demonstrates that PLc can be used as mucosal adjuvant to potentiate the immune response against a polysaccharide antigen like Poli Vi

    Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.

    Get PDF
    To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo

    What Causes The Formation of Disks and End of Bursty Star Formation?

    Full text link
    As they grow, galaxies can transition from irregular/spheroidal with 'bursty' star formation histories (SFHs), to disky with smooth SFHs. But even in simulations, the direct physical cause of such transitions remains unclear. We therefore explore this in a large suite of numerical experiments re-running portions of cosmological simulations with widely varied physics, further validated with existing FIRE simulations. We show that gas supply, cooling/thermodynamics, star formation model, Toomre scale, galaxy dynamical times, and feedback properties do not have a direct causal effect on these transitions. Rather, both the formation of disks and cessation of bursty star formation are driven by the gravitational potential, but in different ways. Disk formation is promoted when the mass profile becomes sufficiently centrally-concentrated in shape (relative to circularization radii): we show that this provides a well-defined dynamical center, ceases to support the global 'breathing modes' which can persist indefinitely in less-concentrated profiles and efficiently destroy disks, promotes orbit mixing to form a coherent angular momentum, and stabilizes the disk. Smooth SF is promoted by the potential or escape velocity (not circular velocity) becoming sufficiently large at the radii of star formation that cool, mass-loaded (momentum-conserving) outflows are trapped/confined near the galaxy, as opposed to escaping after bursts. We discuss the detailed physics, how these conditions arise in cosmological contexts, their relation to other correlated phenomena (e.g. inner halo virialization, vertical disk 'settling'), and observations.Comment: Submitted to MNRAS. 44 pages, 32 figures. Comments welcome. (Minor text corrections from previous version

    Risk analysis and outcome of mediastinal wound and deep mediastinal wound infections with specific emphasis to omental transposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To report our experience, with Deep mediastinal wound infections (DMWI). Emphasis was given to the management of deep infections with omental flaps</p> <p>Methods</p> <p>From February 2000 to October 2007, out of 3896 cardiac surgery patients (prospective data collection) 120 pts (3.02%) developed sternal wound infections. There were 104 males & 16 females; (73.7%) CABG, (13.5%) Valves & (9.32%) CABG and Valve.</p> <p>Results</p> <p>Superficial sternal wound infection detected in 68 patients (1.75%) and fifty-two patients (1.34%) developed DMWI. The incremental risk factors for development of DMWI were: Diabetes (OR = 3.62, CI = 1.2-10.98), Pre Op Creatinine > 200 μmol/l (OR = 3.33, CI = 1.14-9.7) and Prolong ventilation (OR = 4.16, CI = 1.73-9.98). Overall mortality for the DMWI was 9.3% and the specific mortality of the omental flap group was 8.3%. 19% of the "DMWI group", developed complications: hematoma 6%, partial flap loss 3.0%, wound dehiscence 5.3%. Mean Hospital Stay: 59 ± 21.5 days.</p> <p>Conclusion</p> <p>Post cardiac surgery sternal wound complications remain challenging. The role of multidisciplinary approach is fundamental, as is the importance of an aggressive early wound exploration especially for deep sternal infections.</p
    • …
    corecore