33 research outputs found

    The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and Te-based literature data

    Full text link
    The use of IFS is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies both locally and at high redshift. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to the expected uncertainty of these calibrations as a function of the index value or abundance derived and the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of Te-based HII regions to date. This new dataset compiles the Te-based abundances of 603 HII regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present here a comparison between our revisited calibrations with a total of 3423 additional CALIFA HII complexes with abundances derived using the ONS calibration by Pilyugin et al. (2010). The combined analysis of Te-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality and coverage of the space of parameters. In particular, we infer that these indicators show shallower abundance dependencies and statistically-significant offsets compared to those of Pettini and Pagel (2004), Nagao et al. (2006) and P\'erez-Montero and Contini (2009). The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data) reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations),respectively.Comment: 12 pages, 5 figures, accepted for publication in A&

    The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data

    Full text link
    Astronomy and Astrophysics 559 (2013): A114 reproduced with permission from Astronomy and AstrophysicsThe use of integral field spectroscopy is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies, both locally and at high redshift. Many studies have used these fluxes to derive the gas-phase metallicity of the galaxies by applying the so-called strong-line methods. However, the metallicity indicators that these datasets use were empirically calibrated using few direct abundance data points (Te-based measurements). Furthermore, a precise determination of the prediction intervals of these indicators is commonly lacking in these calibrations. Such limitations might lead to systematic errors in determining the gas-phase metallicity, especially at high redshift, which might have a strong impact on our understanding of the chemical evolution of the Universe. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using newdirect abundance measurements. We pay special attention to (1) the expected uncertainty of these calibrations as a function of the index value or abundance derived and (2) the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of Te-based H ii regions to date. This new dataset compiles the Te-based abundances of 603 H ii regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present a comparison between our revisited calibrations with a total of 3423 additional CALIFA H ii complexes with abundances derived using the ONS calibration from the literature. The combined analysis of T e-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality, and coverage of the parameters space. In particular, we infer that these indicators show shallower abundance dependencies and statistically significant offsets compared to others'. The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data), reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations), respectivelyR.A. Marino is funded by the Spanish program of International Campus of Excellence Moncloa (CEI). D. Mast thank the Plan Nacional de Investigación y Desarrollo funding programs, AYA2012-31935 of the Spanish Ministerio de Economía y Competitividad, for the support given to this project. S.F.S thanks the the Ramón y Cajal project RyC-2011-07590 of the spanish Ministerio de Economía y Competitividad, for the support giving to this project. F.F.R.O. acknowledges the Mexican National Council for Science and Technology (CONACYT) for financial support under the program Estancias Postdoctorales y Sabáticas al Extranjero para la Consolidación de Grupos de Investigación, 2010-2012. We acknowledge financial support for the ESTALLIDOS collaboration by the Spanish Ministerio de Ciencia e Innovación under grant AYA2010- 21887-C04-03. BG-L also acknowledges support from the Spanish Ministerio de Economía y Competitividad (MINECO) under grant AYA2012- 39408-C02-02. J.F.-B. acknowledges financial support from the Ramón y Cajal Program and grant AYA2010-21322-C03-02 from the Spanish Ministry of Economy and Competitiveness (MINECO), as well as to the DAGAL network from the People’s Program (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. CK has been funded by project AYA2010-21887 from the Spanish PNAYA. P.P. acknowledges support by the Fundação para a Ciência e a Tecnologia (FCT) under project FCOMP-01-0124-FEDER-029170 (Reference FCT PTDC/FIS-AST/3214/2012), funded by FCT-MEC (PIDDAC) and FEDER (COMPETE). R.M.G.D. and R.G.B. also acknowledge support from the Spanish Ministerio de Economía y Competitividad (MINECO) under grant AyA2010-15081. V.S., L.G., and A.M.M. acknowledge financial support from the Fundação para a Ciência e a Tecnologia (FCT) under program Ciência 2008 and the research grant PTDC/CTE-AST/112582/200

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Mapa geológico de Ronda

    No full text
    56 páginas.-- Características: Formato 21x15 cm.La cartografía geológica está considerada como parte esencial de la cartografía del país: tanto por la influencia en la investigación y desarrollo de los recursos naturales, como por el conocimiento profundo del suelo y el subsuelo, necesario para acometer tanto las obras de ingeniería civil como de las relativas en la ordenación del territorio.Peer reviewe

    Mapa geológico de Cortes de la Frontera

    No full text
    55 páginas.-- Características: Formato 21x15 cm.La cartografía geológica está considerada como parte esencial de la cartografía del país: tanto por la influencia en la investigación y desarrollo de los recursos naturales, como por el conocimiento profundo del suelo y el subsuelo, necesario para acometer tanto las obras de ingeniería civil como de las relativas en la ordenación del territorio.Peer reviewe

    Correction: Evolving Trends in the Management of Acute Appendicitis During COVID-19 Waves: The ACIE Appy II Study (World Journal of Surgery, (2022), 46, 9, (2021-2035), 10.1007/s00268-022-06649-z)

    No full text
    In the original online version of this article Oreste Claudio Buonomo’s family name was misspelled. The original article was corrected

    Evolving Trends in the Management of Acute Appendicitis During COVID-19 Waves: The ACIE Appy II Study

    No full text
    corecore