2,686 research outputs found

    Return times, recurrence densities and entropy for actions of some discrete amenable groups

    Full text link
    Results of Wyner and Ziv and of Ornstein and Weiss show that if one observes the first k outputs of a finite-valued ergodic process, then the waiting time until this block appears again is almost surely asymptotic to 2hk2^{hk}, where hh is the entropy of the process. We examine this phenomenon when the allowed return times are restricted to some subset of times, and generalize the results to processes parameterized by other discrete amenable groups. We also obtain a uniform density version of the waiting time results: For a process on ss symbols, within a given realization, the density of the initial kk-block within larger nn-blocks approaches 2hk2^{-hk}, uniformly in n>skn>s^k, as kk tends to infinity. Again, similar results hold for processes with other indexing groups.Comment: To appear in Journal d'Analyse Mathematiqu

    Rigorous Non-Perturbative Ornstein-Zernike Theory for Ising Ferromagnets

    Full text link
    We rigorously derive the Ornstein-Zernike asymptotics of the pair-correlation functions for finite-range Ising ferromagnets in any dimensions and at any temperature above critical

    SCOZA for Monolayer Films

    Full text link
    We show the way in which the self-consistent Ornstein-Zernike approach (SCOZA) to obtaining structure factors and thermodynamics for Hamiltonian models can best be applied to two-dimensional systems such as thin films. We use the nearest-neighbor lattice gas on a square lattice as an illustrative example.Comment: 10 pages, 5 figure

    Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rockfall scar

    No full text
    International audienceThe need for monitoring slope movements increases with the increasing need for new areas to inhabit and new land management requirements. Rock-slope monitoring implies the use of a database, but also the use of other tools to facilitate the analysis of movements. The experience and the philosophy of monitoring the top of the Randa rockfall scar which is sliding down into the valley near Randa village in Switzerland are presented. The database includes data correction tools, display facilities and information about benchmarks. Tools for analysing the movement acceleration and spatial changes and forecasting movement are also presented. Using the database and its tools it was possible to discriminate errors from critical slope movement. This demonstrates the efficiency of these tools in monitoring the Randa scar

    Mapping a Homopolymer onto a Model Fluid

    Full text link
    We describe a linear homopolymer using a Grand Canonical ensemble formalism, a statistical representation that is very convenient for formal manipulations. We investigate the properties of a system where only next neighbor interactions and an external, confining, field are present, and then show how a general pair interaction can be introduced perturbatively, making use of a Mayer expansion. Through a diagrammatic analysis, we shall show how constitutive equations derived for the polymeric system are equivalent to the Ornstein-Zernike and P.Y. equations for a simple fluid, and find the implications of such a mapping for the simple situation of Van der Waals mean field model for the fluid.Comment: 12 pages, 3 figure

    Solution of the Percus-Yevick equation for hard discs

    Full text link
    We solve the Percus-Yevick equation in two dimensions by reducing it to a set of simple integral equations. We numerically obtain both the pair correlation function and the equation of state for a hard disc fluid and find good agreement with available Monte-Carlo calculations. The present method of resolution may be generalized to any even dimension.Comment: 9 pages, 3 figure

    On dominant contractions and a generalization of the zero-two law

    Full text link
    Zaharopol proved the following result: let T,S:L^1(X,{\cf},\m)\to L^1(X,{\cf},\m) be two positive contractions such that TST\leq S. If ST<1\|S-T\|<1 then SnTn<1\|S^n-T^n\|<1 for all n\in\bn. In the present paper we generalize this result to multi-parameter contractions acting on L1L^1. As an application of that result we prove a generalization of the "zero-two" law.Comment: 10 page

    Sharp error terms for return time statistics under mixing conditions

    Get PDF
    We describe the statistics of repetition times of a string of symbols in a stochastic process. Denote by T(A) the time elapsed until the process spells the finite string A and by S(A) the number of consecutive repetitions of A. We prove that, if the length of the string grows unbondedly, (1) the distribution of T(A), when the process starts with A, is well aproximated by a certain mixture of the point measure at the origin and an exponential law, and (2) S(A) is approximately geometrically distributed. We provide sharp error terms for each of these approximations. The errors we obtain are point-wise and allow to get also approximations for all the moments of T(A) and S(A). To obtain (1) we assume that the process is phi-mixing while to obtain (2) we assume the convergence of certain contidional probabilities

    Quantum criticality around metal-insulator transitions of strongly correlated electrons

    Full text link
    Quantum criticality of metal-insulator transitions in correlated electron systems is shownto belong to an unconventional universality class with violation of Ginzburg-Landau-Wilson(GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square latticesare capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transition and with a number of numerical results beyond the mean-field level, implying that the preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. Detailed analyses on the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical "opalescence". Analyses on crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and kappa-ET-type organic conductor provide us with evidences for the existence of the present marginal quantum criticality.Comment: 24 pages, 19 figure
    corecore