1,918 research outputs found
Evolution of collision numbers for a chaotic gas dynamics
We put forward a conjecture of recurrence for a gas of hard spheres that
collide elastically in a finite volume. The dynamics consists of a sequence of
instantaneous binary collisions. We study how the numbers of collisions of
different pairs of particles grow as functions of time. We observe that these
numbers can be represented as a time-integral of a function on the phase space.
Assuming the results of the ergodic theory apply, we describe the evolution of
the numbers by an effective Langevin dynamics. We use the facts that hold for
these dynamics with probability one, in order to establish properties of a
single trajectory of the system. We find that for any triplet of particles
there will be an infinite sequence of moments of time, when the numbers of
collisions of all three different pairs of the triplet will be equal. Moreover,
any value of difference of collision numbers of pairs in the triplet will
repeat indefinitely. On the other hand, for larger number of pairs there is but
a finite number of repetitions. Thus the ergodic theory produces a limitation
on the dynamics.Comment: 4 pages, published versio
Structure of strongly coupled, multi-component plasmas
We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification
Liquid Transport Due to Light Scattering
Using experiments and theory, we show that light scattering by
inhomogeneities in the index of refraction of a fluid can drive a large-scale
flow. The experiment uses a near-critical, phase-separated liquid, which
experiences large fluctuations in its index of refraction. A laser beam
traversing the liquid produces a large-scale deformation of the interface and
can cause a liquid jet to form. We demonstrate that the deformation is produced
by a scattering-induced flow by obtaining good agreements between the measured
deformations and those calculated assuming this mechanism.Comment: 4 pages, 5 figures, submitted to Physical Review Letters v2: Edited
based on comments from referee
Quantum criticality around metal-insulator transitions of strongly correlated electrons
Quantum criticality of metal-insulator transitions in correlated electron
systems is shownto belong to an unconventional universality class with
violation of Ginzburg-Landau-Wilson(GLW) scheme formulated for symmetry
breaking transitions. This unconventionality arises from an emergent character
of the quantum critical point, which appears at the marginal point between the
Ising-type symmetry breaking at nonzero temperatures and the topological
transition of the Fermi surface at zero temperature. We show that Hartree-Fock
approximations of an extended Hubbard model on square latticesare capable of
such metal-insulator transitions with unusual criticality under a preexisting
symmetry breaking. The obtained universality is consistent with the scaling
theory formulated for Mott transition and with a number of numerical results
beyond the mean-field level, implying that the preexisting symmetry breaking is
not necessarily required for the emergence of this unconventional universality.
Examinations of fluctuation effects indicate that the obtained critical
exponents remain essentially exact beyond the mean-field level. Detailed
analyses on the criticality, containing diverging carrier density fluctuations
around the marginal quantum critical point, are presented from microscopic
calculations and reveal the nature as quantum critical "opalescence". Analyses
on crossovers between GLW type at nonzero temperature and topological type at
zero temperature show that the critical exponents observed in (V,Cr)2O3 and
kappa-ET-type organic conductor provide us with evidences for the existence of
the present marginal quantum criticality.Comment: 24 pages, 19 figure
Fluctuations in Nonequilibrium Statistical Mechanics: Models, Mathematical Theory, Physical Mechanisms
The fluctuations in nonequilibrium systems are under intense theoretical and
experimental investigation. Topical ``fluctuation relations'' describe
symmetries of the statistical properties of certain observables, in a variety
of models and phenomena. They have been derived in deterministic and, later, in
stochastic frameworks. Other results first obtained for stochastic processes,
and later considered in deterministic dynamics, describe the temporal evolution
of fluctuations. The field has grown beyond expectation: research works and
different perspectives are proposed at an ever faster pace. Indeed,
understanding fluctuations is important for the emerging theory of
nonequilibrium phenomena, as well as for applications, such as those of
nanotechnological and biophysical interest. However, the links among the
different approaches and the limitations of these approaches are not fully
understood. We focus on these issues, providing: a) analysis of the theoretical
models; b) discussion of the rigorous mathematical results; c) identification
of the physical mechanisms underlying the validity of the theoretical
predictions, for a wide range of phenomena.Comment: 44 pages, 2 figures. To appear in Nonlinearity (2007
Sharp error terms for return time statistics under mixing conditions
We describe the statistics of repetition times of a string of symbols in a
stochastic process. Denote by T(A) the time elapsed until the process spells
the finite string A and by S(A) the number of consecutive repetitions of A. We
prove that, if the length of the string grows unbondedly, (1) the distribution
of T(A), when the process starts with A, is well aproximated by a certain
mixture of the point measure at the origin and an exponential law, and (2) S(A)
is approximately geometrically distributed. We provide sharp error terms for
each of these approximations. The errors we obtain are point-wise and allow to
get also approximations for all the moments of T(A) and S(A). To obtain (1) we
assume that the process is phi-mixing while to obtain (2) we assume the
convergence of certain contidional probabilities
Multifractal properties of return time statistics
Fluctuations in the return time statistics of a dynamical system can be
described by a new spectrum of dimensions. Comparison with the usual
multifractal analysis of measures is presented, and difference between the two
corresponding sets of dimensions is established. Theoretical analysis and
numerical examples of dynamical systems in the class of Iterated Functions are
presented.Comment: 4 pages, 3 figure
How do you define recovery? A qualitative study of patients with eating disorders, their parents, and clinicians
ObjectiveRecovery from an eating disorder (ED) may be defined differently by different stakeholders. We set out to understand the definition of ED recovery from the perspective of patients, their parents, and clinicians.MethodWe recruited patients with EDs (n = 24, ages 12–23 years) representing different diagnoses (anorexia nervosa n = 17, bulimia nervosa n = 4, binge‐ED n = 2, avoidant/restrictive food intake disorder n = 1), along with their parents (n = 20), dietitians (n = 11), therapists (n = 14), and primary care providers (n = 9) from three sites: Boston Children’s Hospital, University of Michigan C. S. Mott Children’s Hospital, and Penn State Hershey Children’s Hospital. In‐depth, semi‐structured, qualitative interviews explored participants’ definitions of recovery. Interviews were analyzed using inductive data‐driven thematic analysis. Statistical analyses followed to examine the distribution within each theme by respondent type.ResultsQualitative analysis resulted in the emergence of four overarching themes of ED recovery: (a) psychological well‐being, (b) eating‐related behaviors/attitudes, (c) physical markers, and (d) self‐acceptance of body image. Endorsement of themes two and four did not significantly differ between patients, parents, and clinicians. Clinicians were significantly more likely to endorse theme one (χ2 = 9.90, df = 2, p = .007, φc = 0.356) and theme three (χ2 = 6.42, df = 2, p = .04, φc = 0.287) than patients and parents.DiscussionOur study demonstrates overwhelming support for psychological markers as indicators of ED recovery by all three groups. Clinicians should remain open to additional markers of recovery such as body acceptance and eating‐related behaviors/emotions that may be of critical importance to patients and their caregivers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156211/2/eat23294_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156211/1/eat23294.pd
Implementation of the Hierarchical Reference Theory for simple one-component fluids
Combining renormalization group theoretical ideas with the integral equation
approach to fluid structure and thermodynamics, the Hierarchical Reference
Theory is known to be successful even in the vicinity of the critical point and
for sub-critical temperatures. We here present a software package independent
of earlier programs for the application of this theory to simple fluids
composed of particles interacting via spherically symmetrical pair potentials,
restricting ourselves to hard sphere reference systems. Using the hard-core
Yukawa potential with z=1.8/sigma for illustration, we discuss our
implementation and the results it yields, paying special attention to the core
condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio
- …