1,918 research outputs found

    Evolution of collision numbers for a chaotic gas dynamics

    Full text link
    We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time-integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger number of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.Comment: 4 pages, published versio

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Liquid Transport Due to Light Scattering

    Get PDF
    Using experiments and theory, we show that light scattering by inhomogeneities in the index of refraction of a fluid can drive a large-scale flow. The experiment uses a near-critical, phase-separated liquid, which experiences large fluctuations in its index of refraction. A laser beam traversing the liquid produces a large-scale deformation of the interface and can cause a liquid jet to form. We demonstrate that the deformation is produced by a scattering-induced flow by obtaining good agreements between the measured deformations and those calculated assuming this mechanism.Comment: 4 pages, 5 figures, submitted to Physical Review Letters v2: Edited based on comments from referee

    Quantum criticality around metal-insulator transitions of strongly correlated electrons

    Full text link
    Quantum criticality of metal-insulator transitions in correlated electron systems is shownto belong to an unconventional universality class with violation of Ginzburg-Landau-Wilson(GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square latticesare capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transition and with a number of numerical results beyond the mean-field level, implying that the preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. Detailed analyses on the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical "opalescence". Analyses on crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and kappa-ET-type organic conductor provide us with evidences for the existence of the present marginal quantum criticality.Comment: 24 pages, 19 figure

    Fluctuations in Nonequilibrium Statistical Mechanics: Models, Mathematical Theory, Physical Mechanisms

    Get PDF
    The fluctuations in nonequilibrium systems are under intense theoretical and experimental investigation. Topical ``fluctuation relations'' describe symmetries of the statistical properties of certain observables, in a variety of models and phenomena. They have been derived in deterministic and, later, in stochastic frameworks. Other results first obtained for stochastic processes, and later considered in deterministic dynamics, describe the temporal evolution of fluctuations. The field has grown beyond expectation: research works and different perspectives are proposed at an ever faster pace. Indeed, understanding fluctuations is important for the emerging theory of nonequilibrium phenomena, as well as for applications, such as those of nanotechnological and biophysical interest. However, the links among the different approaches and the limitations of these approaches are not fully understood. We focus on these issues, providing: a) analysis of the theoretical models; b) discussion of the rigorous mathematical results; c) identification of the physical mechanisms underlying the validity of the theoretical predictions, for a wide range of phenomena.Comment: 44 pages, 2 figures. To appear in Nonlinearity (2007

    Sharp error terms for return time statistics under mixing conditions

    Get PDF
    We describe the statistics of repetition times of a string of symbols in a stochastic process. Denote by T(A) the time elapsed until the process spells the finite string A and by S(A) the number of consecutive repetitions of A. We prove that, if the length of the string grows unbondedly, (1) the distribution of T(A), when the process starts with A, is well aproximated by a certain mixture of the point measure at the origin and an exponential law, and (2) S(A) is approximately geometrically distributed. We provide sharp error terms for each of these approximations. The errors we obtain are point-wise and allow to get also approximations for all the moments of T(A) and S(A). To obtain (1) we assume that the process is phi-mixing while to obtain (2) we assume the convergence of certain contidional probabilities

    Multifractal properties of return time statistics

    Full text link
    Fluctuations in the return time statistics of a dynamical system can be described by a new spectrum of dimensions. Comparison with the usual multifractal analysis of measures is presented, and difference between the two corresponding sets of dimensions is established. Theoretical analysis and numerical examples of dynamical systems in the class of Iterated Functions are presented.Comment: 4 pages, 3 figure

    How do you define recovery? A qualitative study of patients with eating disorders, their parents, and clinicians

    Full text link
    ObjectiveRecovery from an eating disorder (ED) may be defined differently by different stakeholders. We set out to understand the definition of ED recovery from the perspective of patients, their parents, and clinicians.MethodWe recruited patients with EDs (n = 24, ages 12–23 years) representing different diagnoses (anorexia nervosa n = 17, bulimia nervosa n = 4, binge‐ED n = 2, avoidant/restrictive food intake disorder n = 1), along with their parents (n = 20), dietitians (n = 11), therapists (n = 14), and primary care providers (n = 9) from three sites: Boston Children’s Hospital, University of Michigan C. S. Mott Children’s Hospital, and Penn State Hershey Children’s Hospital. In‐depth, semi‐structured, qualitative interviews explored participants’ definitions of recovery. Interviews were analyzed using inductive data‐driven thematic analysis. Statistical analyses followed to examine the distribution within each theme by respondent type.ResultsQualitative analysis resulted in the emergence of four overarching themes of ED recovery: (a) psychological well‐being, (b) eating‐related behaviors/attitudes, (c) physical markers, and (d) self‐acceptance of body image. Endorsement of themes two and four did not significantly differ between patients, parents, and clinicians. Clinicians were significantly more likely to endorse theme one (χ2 = 9.90, df = 2, p = .007, φc = 0.356) and theme three (χ2 = 6.42, df = 2, p = .04, φc = 0.287) than patients and parents.DiscussionOur study demonstrates overwhelming support for psychological markers as indicators of ED recovery by all three groups. Clinicians should remain open to additional markers of recovery such as body acceptance and eating‐related behaviors/emotions that may be of critical importance to patients and their caregivers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156211/2/eat23294_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156211/1/eat23294.pd

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio
    corecore