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K. Wünsch et al., Phys. Rev. E 77, 056404 (2008)

Structure of Strongly Coupled, Multi-Component Plasmas
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Abstract

We investigate the short range structure in strongly coupled, fluid-like plasmas using the hyper-

netted chain approach generalized to multi-component systems. Good agreement with numerical

simulations validates this method for the parameters considered. We found strong mutual impact

on the spacial arrangement for systems with multiple ion species which were most clearly pro-

nounced in the static structure factor. Quantum pseudo-potentials were used to mimic diffraction

and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of

pseudo-potentials proposed lead to large differences in both the pair distributions and the struc-

ture factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering

signal illustrating the need for comparison with full quantum calculations or experimental verifi-

cation.

PACS numbers: 52.27.Gr, 52.70.-m, 52.59.Hq
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I. INTRODUCTION

Modern pulsed power technology opened the way to investigate dense, strongly coupled

plasmas in the laboratory. Other examples for strongly interacting particles are the dust

grains in complex plasmas or ions in traps. These systems exhibit a short range, fluid-

like structure that might be considered as the most striking difference to traditional, gas-

like plasmas. This well-pronounced structure, particularly in the ionic subsystem, affects

many equilibrium, transport and relaxation properties. This is well known for the equation

of state [1, 2], the Ziman formula for the conductivity [3], and the equilibration of two-

temperature plasmas [4]. Precise structural information is also needed for the interpretation

of x-ray diffraction measurments [5], the newly developed diagnostics by means of spectrally

resolved x-ray Thomson scattering [6–10], and the elastic scattering measurements presented

in Ref. [11].

The short range order in the ion component of strongly coupled plasmas is created by the

strong Coulomb interaction whose strength is usually cast in the classical coupling parameter

Γii =
Z2

i e
2

aikBT
, (1)

where ai =(3/4πni)
1/3 is the mean inter-particle spacing. Gas-like plasmas with Γii≪1 have

almost uncorrelated particles and show no structure. For strongly coupled ions with Γii >1,

the correlations exceed the thermal energy and a short range order is established. The

structural properties become increasingly significant with coupling strength. Eventually,

the ions freeze into a lattice for Γii > 172 [12]. The electrons, on the other hand, are

almost always weakly coupled, but very dense systems exhibit a range order due to the

Pauli principle (see, e.g., Ref. [13]).

Intrinsically, plasmas contain at least two components (electrons and ions) and most

systems have more than one ion species due to multiple chemical elements and/or ionization

stages. In contrast, the theoretical approaches for the structural properties consider mostly

only one ion component at an average charge state using either the one component plasma

(OCP) or the Yukawa model [1]. The first considers the electrons only as a rigid neutralizing

background, while the second allows for polarization of the electron gas resulting in statically

screened ion-ion interactions. The advantages of such a treatment are a largely reduced

numerical effort and the fact that the results depend on only one or two parameters namely

the coupling parameter Γ or the coupling and screening parameters Γ and κ, respectively.
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The OCP and Yukawa models have been intensively investigated by classical Monte Carlo

(MC) [14–16] and molecular dynamics (MD) [12, 17] simulations which can precisely predict

the ionic structure, but require a large numerical effort. A computationally less demanding

approach is based on integral equations developed in fluid theory [18, 19]. For the considered

Coulomb systems, this hypernetted chain (HNC) approach has been shown to yield good

results compared to simulations for coupling parameters up to Γ ≈ 100 [20]. As for the

simulations, this method has been mainly applied to the OCP and Yukawa models; only

few calculations were applied to ionic mixtures [21, 22], electrons and ions [23, 24], and

atomic-molecular hydrogen [25].

The techniques mentioned above are based on classical physics and are appropriate for

the ions only. To treat the electrons correctly, quantum effects must be included. This can

be approximately achieved by using quantum pseudo-potentials which are designed to model

the quantum behavior in classical calculations [23, 26–29]. However, the applicability of these

potentials is limited to weakly degenerate electrons. Otherwise, a full quantum approach

such as the Green’s function technique [30], path integral Monte Carlo simulations [31–33]

or density functional molecular dynamics simulations [34, 35] should be applied. However,

these techniques are computationally even more demanding than classical simulations.

In this paper, we will investigate the structure of multi-component plasmas mainly

through the integral equations approach of classical fluid theory. In addition, MD and MC

simulations were used to validate the results. The numerical HNC scheme is extended to al-

low for an arbitrary number of components. This enables us to study plasmas with multiple

ion species as well as to go beyond the linear response approximation for the electrons. Quan-

tum effects are included by different pseudo-potentials that mimic quantum diffraction as

well as exchange. In particular, the different electron-ion potentials suggested generate large

differences for the pair distributions and static structure factors. The multi-component code

is then used to study exchange potentials that act only on like-spin electrons and, therefore,

requires two electron components. Beryllium in the warm dense matter regime was chosen as

the main example since it was investigated in recent experiments by x-ray scattering [7, 9].

All input parameters needed for our calculations, i.e. electron density, ion charge state, and

temperature, have been inferred from the experiments. Using these values, the theoreti-

cally obtained structure factors, particularly for the small wave numbers, show considerable

differences depending on the number of components and the kind of pseudo-potential used.
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II. THEORETICAL DESCRIPTION

A. Basic Definitions and Weak Coupling

The spacial arrangements in systems of classical particles are usually described by density

correlations which in turn define the pair distribution function via

gab(r1, r2) =
1

nanb

〈

Na
∑

i=1

Nb
∑

j=1

i6=j , ∀ a=b

δ(r1 − ri)δ(r2 − rj)

〉

, (2)

where ri and rj are the positions of the particles and the brackets denote the average over

a canonical ensemble. In fluid-like systems, the pair distribution function (and all other

correlation functions) depends only on the inter-particle spacing r = |r1−r2|. Equivalently,

the structure of the system can also be depicted by the static structure factor which is

defined via the Fourier transformation of the total correlation function hab(r) = gab(r)−1,

that is

Sab(k) = δab +
√

nanb

∫

dr [gab(r) − 1] exp(ik · r) . (3)

In weakly coupled systems described by pair potentials Vab(r), the interactions can be

treated within linear response and the pair distribution is given by [1]

g0
ab(r) = exp {−βVab(r)} , (4)

where β = 1/kBT denotes the inverse temperature. It is well-known that the long range

nature of the Coulomb force leads to screening. As a result, the bare Coulomb potential in

expression (4) must be replaced by the screened Coulomb or Debye potential [2]

V D
ab (r) =

ZaZb e2

r
exp(−κr) , (5)

where κ is the inverse screening length. If only the electrons are treated within linear

response, the Yukawa model for ions interacting via the statically screened potential (5)

follows. To allow for (partially) degenerate electrons needed to describe warm dense matter,

the inverse electron screening length is given by

κ2
e =

4e2me

πh̄3

∞
∫

0

dp fe(p) , (6)

where fe(p) is the Fermi distribution for the electrons. This definition includes the Debye

and Thomas-Fermi screening models as limiting cases for classical and highly degenerate

electrons, respectively.
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B. Hypernetted Chain (HNC) Approach

The weak coupling approximation (4) fails for denser and more strongly coupled plasmas,

where the correlations cannot be treated as a small perturbation of the thermal motion. Here,

higher order correlations must be taken into account which can be done using the integral

equation approach of fluid theory. For that goal, one introduces the direct correlation

function cab(r) [18, 19] which is connected to the total correlation function hab(r) via the

Ornstein-Zernike relation [36]

hab(r) = cab(r) +
∑

c

nc

∫

dr̄ cac(r̄) hcb(|r − r̄|) , (7)

Furthermore, we need a closure relation to fully determine the system. Here, we use the

hypernetted chain closure relation that is known to reproduce numerical simulation data for

one component Coulomb systems well

gab(r) = exp(−βVab(r) + hab(r) − cab(r)) . (8)

The two equations (7) and (8) fully define the static structure in classical multi-component

systems. For the numerical evaluation, it is useful to consider the fact that the Ornstein-

Zernike relation (7) contains a convolution and is therefore algebraic in Fourier space. In

the case of one component, the HNC equations (7) and (8) can thus be easily solved by

iteration going back and forth from real to Fourier space and vice versa. For the systems

with N components, the structure of the equations is a bit more complicated since we have

to consider N(N +1)/2 different correlation functions (note the symmetry: hab = hba and

cab =cba). The Ornstein-Zernike relation is therefore a matrix equation in Fourier space

H̃(k) = C̃(k) + C̃(k)D̃H̃(k) (9)

with D̃ = δabna containing the densities of the different species and C̃(k) and H̃(k) having

elements cac(k) and hcb(k), respectively. For a two component system, this equation can be

solved simply by Kramers rule while one has to rely on numerical matrix inversion for the

general multi-component case.

Since the screening is described within the multi-component HNC-scheme, the used two-

body potentials for the interacting plasma particles must be Coulomb-like for long distances.

Accordingly, the direct correlation function is also long ranged

lim
r→∞

cab(r) = −βVab(r) ∼
1

r
. (10)
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This behavior prohibits a direct Fourier transformation which can however be achieved by

introducing short ranged functions similar to Ref. [37]. We can now solve the resulting system

of equations iteratively starting with the weak coupling solution (10). After transformation

to short ranged functions and into Fourier space, we solve the Ornstein-Zernike relation

(9) by numerical matrix inversion for each k value. The resulting matrixes C̃(k) are then

reassembled into functions cab(k) and transformed back to real space. Here, the closure

relation (8) is used to calculate new total correlation functions hab(r). These newly obtained

functions are now used as an improved guess at the start of the loop until convergence is

achieved. For the transformations between real and Fourier space, we employ a fast Fourier

transformation (FFT) which has been, as the matrix inversion techniques, implemented from

Numerical Recipes [38].

The iterative procedure above is practically limited by the coupling strength as expressed

in the Coulomb coupling parameter Γ. For systems with purely repulsive forces, such as the

ion components in a plasma, the full fluid region is accessible. In contrast, the attractive

electron-ion interaction posses a considerable problem which is mitigated by the use of

weaker pseudo-potentials that are employed to mimic quantum effects in classical systems

(see section III B). Such a treatment allows HNC solution up to moderately coupled plasmas

with Γee = e2/aekBT ≈ 1.

C. Numerical Simulations

Complementary to the HNC calculations, classical Monte Carlo (MC) and molecular dy-

namics (MD) simulations were applied to obtain the structural properties. The simulations

were mainly used to verify the accuracy of the HNC results since they intrinsically include all

correlations, especially the bridge diagrams neglected in the HNC approach. All simulations

were performed with several thousand electrons and ions contained in a cubic volume with

periodic boundary conditions. The obtained particle positions define the pair distributions

gab directly via definition (2) where the average was taken over many configurations or times,

respectively to reduce the numerical noise.

For the MC simulations, the well-known Metropolis algorithm was implemented and good

agreement with the HNC approach was found for weakly to moderately coupled plasmas.

However, we were unable to find stable solution for strongly coupled electron-ion systems.
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In contrast, multi-component molecular dynamics simulations gave stable solution even

for strong coupling. Here, the very different time scales for the dynamics of electrons and

ions are a well-known problem of such dynamic calculations. For the static structure aimed

for in this paper, it can be avoided by using an artificial mass ratio. The reason is the

ergodicity of the system which leads to the fact that static correlations depend only on

the interplay of potential and kinetic energies. This can also be seen in the HNC scheme

which shows no reference to particle mass. Test runs with different mass ratios confirmed

this statement. Using similar masses, one obtains well-sampled pair distributions for all

combinations of species and acceptable run times.

III. RESULTS AND DISCUSSION

A. Strongly Coupled Ions Systems

Let us first consider the free plasma electrons within linear response and investigate

plasmas with multiple ion species. The ion-ion interaction is then given by a screened

Coulomb potential (5). Plasmas with different ionization stages and systems containing

more than one element such as plastics (CH) or SF6 are typical examples.

Fig. 1 shows the partial ion-ion pair distributions and structure factors of a strongly

coupled CH plasma. In this example, all three partial pair distributions show the typical

signature for strongly coupled plasmas: one or more maxima indicating a high probability

to find the next ion at some distance and a depleted area (the so-called correlation hole) in

the vicinity of each ion. Since the carbon-carbon coupling is strongest, the corresponding

pair distribution and structure factor show more pronounced maxima.

The well-established short range structure for the protons demonstrates the need for a

coupled multi-component description. For comparison, Fig. 1 shows also data for an one

component plasma of singly charged ions at the same conditions. Clearly, such a plasma is

only moderately coupled which results in a monotonic increase of both the pair distribution

and the structure factor. The comparison with the CH plasmas shows that the more highly

charged carbon ions imprint their structure onto the subsystems of the protons. Neither, a

two fluid description nor an average charge state calculation can reproduce such a behavior.

It was suggested that the observed smaller average spacing of the protons/deuterons due
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FIG. 1: (color online) (a) Partial pair distributions for a CH plasma with nH =nC =2.5×1023 cm−3

and T = 2×104 K. The hydrogen and carbon ions are fully and 4-fold ionized, respectively. For

comparison, the dashed line, labeled Z =1, shows results for an isolated hydrogen plasmas under

the same conditions. (b) Static structure factors for the same CH plasma.
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FIG. 2: (color online) (a) Partial pair distributions (dotted) for a gold plasma with ni =1024 cm−3,

T =104 K, and ion charge states of Z =1 and Z =2 (equally distributed). The full line shows the

averaged pair distribution (11) and the dashed line the results of an one component calculation

with Z̄ =1.5. (b) Same as (a) for the static structure factor.

to the presence of more highly charged ions could enhance the nuclear reaction rates in

multi-component, astrophysical plasmas [22].

The structure factors at small k values show the need for a fully coupled description

even more clearly. While the carbon-carbon structure factor roughly reflects the behavior

of an one component calculation, both other partial structure factors show clear signs of

modulation: the carbon-proton structure factor exhibits the maximum at the same position
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than the carbon-carbon one which indicates an alternating arrangement of carbon ions and

protons. For large k, the proton-proton structure follows the one for an isolated proton

systems, but it is much larger in the hydrodynamic limit, i.e., at small k. This reflects

the fact that the long range part of the proton-proton potential is strongly altered by the

carbon ions. Since the NC scheme self-consistently includes the screening contribution of all

considered species, the form of SHH(k) can be interpreted as a strong, nonlinear screening

effect generated by the carbon ions. Please note, that the partial structure factor Sab with

a 6= b is defined as the Fourier transform of hab = gab − 1 without adding unity. That

may led to negative values of these partial structure factors at small k. However, scattering

probabilities are proportional to the total structure factor, that is positive definite and, due

to this definition, has the correct limit limk→∞ S(k) = 1.

The similar effects, but weaker, can be found in plasmas with one element but multiple

ionization stages. As an example, compressed gold with an equal number of singly and

doubly charged ions is considered in Fig. 2. Here, in the two component plasma (TCP), the

screening produced by the electrons is rather strong as indicated by an inverse screening

length of κe =1.81 a−1
i .

Such systems are often described by an average charge state for the ions (Z̄ =1.5 in this

case). To estimate the error produced by such a calculation, we defined the average ionic

pair distribution by

ḡ(r) =
1

N2

∑

ab

gab(r) , (11)

where N is the number of components. The average structure factor is given in usual way

by the Fourier transformation of ḡ−1. These quantities are then compared to the one from

a one component calculation using an average charge state Z̄. The comparison in Fig. 2

shows that the assumption of an average charge state overestimates the coupling strength

(steeper slope of g(r), larger correlation hole and more pronounced peaks). Moreover, the

ion-ion structure factor at small k values is underestimated. These large relative differences

are very important for the interpretation of the x-ray scattering signals were Sii(k) for small

k is needed.

In addition to the examples shown, we performed calculations for other multi-component

systems such as other plastics and SF6 which all showed the same behavior as the presented

cases. In other tests for dusty plasmas with more than 100 different charge states for different
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dust grain species, we could not find any hints that would limit the ability of the method

(other than run time).

B. Electron-Ion Systems: Quantum Diffraction Effects within the Classical De-

scription

The HNC approach is a powerful technique to describe classical plasmas in the strongly

coupled region. It can also be used to go beyond the linear screening model by considering

the electrons within a multi-component version and thereby treat electrons and ions on an

equal footing. The quantum mechanical nature of the electrons, e.g., quantum diffraction as

well as exchange effects, must however be included in this classical scheme. The diffraction

effects, which will be considered first, can be even important in the nondegenerate high

temperature region.

One way to include quantum effects approximately is based on the use of pseudo-

potentials, that are designed to mimic certain quantum effects, within the classical method

(HNC or simulations). Such quantum potential can be obtained by identifying the two

particle Slater sum Ŝab with an auxiliary quantum potential in the classical partition sum

[39, 41]

Ŝab(r) = exp(−βV qm
ab (r)) . (12)

Since we are interested in the description of a system with free electrons, only the scattering

states should be included in the Slater sum. By treating the Coulomb interaction on the

level of a first Born approximation, the Kelbg potential follows [26, 27]

V Kelbg
ab (r) =

ZaZbe
2

r

{

1 − e−x2

ab +
√

πxab [1 − Φ (xab)]
}

. (13)

Here, xab = r/λab where λab = (h̄/(2µabkBT ))1/2 is the thermal de Broglie wave length with

the reduced mass µab =mamb/(ma +mb) and Φ(x)=(2/
√

π)
∫ x
0 dt exp(−t2) denotes the error

function.

Other forms for quantum diffraction potentials were suggested by Deutsch [28]

V Deutsch
ab (r) =

ZaZbe
2

r

[

1 − exp
(

− r

λab

)]

(14)

and Klimontovich and Kraeft (KK) [24, 29]

V KK
ei (r) = −kBTξ2

ei

16

[

1 +
kBTξ2

ei

16Ze2
r

]−1

, (15)
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FIG. 3: (color online) (a) Electron-ion (upper triple) and ion-ion (lower triple) pair distributions

for a plasma with ni =1022 cm−3, Z = 1, and T =4.5×104 K. Different quantum pseudo-potentials

are used for the e-i and e-e interactions as labeled. In the case of the KK potential (15), the e-e

interaction is described by the Deutsch potential (14). i-i interactions are always describe by the

Coulomb potential. (b) Same as (a) for the static structure factors.

where ξei = Zie
2β/λei. It should be mentioned, that the last potential was derived in this

form for the electron-ion interaction only.

All these potentials display a similar behavior: for large distances, they coincide with

the Coulomb potential whereas they approach a finite value for r → 0. In this way, the

singularity of the Coulomb potential at the origin is lifted. The amplitude of the potential

at r=0 is however very different.

Fig. 3 demonstrates the effect of the different quantum potentials on the predicted partial

pair distributions and structure factors; both display large differences for small r and k,

respectively. The changes in the ion-ion pair distribution gii and structure factor Sii are

quite indirect since for the ions quantum effects are negligible and, therefore, the ion-ion

potential is pure Coulomb. The strongest potential (Kelbg) leads to an electron-ion pair

distribution that is highly peaked around the origin. In turn, the electrons screen the ions

very effectively and the resulting effective ion-ion potential is weakest. On the other hand,

the very weak Klimontovich-Kraeft potential leads to almost no screening and accordingly

to an OCP-like behavior of the ions which is highlighted by a very low value of Sii(0).

To demonstrate the abilities of the developed HNC code, Fig. 4 shows a comparison

with molecular dynamics simulations data for an ionized gas mixture that contains four

different ion species (two charge states of Xenon, one for Argon, and fully ionized Helium).
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FIG. 4: (color online) Comparison of the HNC results with molecular dynamics simulations for a

plasma with four different ion species Xe11+ with ni =7.5×1023 cm−3, Xe10+ with ni =3×1023 cm−3,

Ar8+ with ni = 5×1022 cm−3, and He2+ with ni = 5×1023 cm−3. The plasma temperature is

T =2.5×106 K. Shown are the functions gee, gei, and the partial pair distributions for like ions gaa.

The pair interactions are modelled by the Deutsch potential (14).

The electrons are also fully included in the code that thus has to describe five independent

species. Except for the electron-electron distribution, we found an excellent agreement

between HNC results and simulation data. The differences in gee(r) at small r result from

the fact that the electron-electron interaction is strong for these distances and the bridge

diagrams neglected in the HNC approach matter here. Such differences between HNC and

MD are well known for strongly coupled Coulomb systems [20]. The two approaches have

two further distinctions: the HNC code is several orders of magnitude faster and noise due

to poor statistics as in MD (some ion species are represented by a small number of ions only)

is no issue. The latter is most prominent for the helium-helium pair distribution where the

MD data are rather noisy.

C. Degenerate Electrons: Modeling Exchange

In addition to diffraction effects, quantum exchange contributions must be considered

for high density plasmas and the warm dense matter region. Exchange effects are usually

modelled by adding a further term to the basic electron-electron potential that already

considers diffraction effects

V total
ee (r) = V diff

ee (r) + V ex
ee (r) . (16)
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FIG. 5: (color online) Partial structure factors for an aluminum plasmas with ni =2.7×1022 cm−3,

Z =3, and T =1.5×105 K. The line styles correspond to different approximations for the e-e exchange

potential; the diffraction part and the e-i interactions are described by the Deutsch potential (14)

(Coulomb for i-i interactions).

These exchange contributions can be derived as for the case of quantum diffraction [40]. A

different way is based on the known partition function for ideal systems. Considering two

separate electron species, the potential between like-spin electrons is then given by [41]

V ex
↑↑,↓↓ = −kBT ln

[

1 − exp

(

−2πr2

λ2
ee

)]

. (17)

Of course, no exchange potential must be introduced between the two electron species. Such

a treatment requires however one species more in the HNC equations or the simulation.

Therefore, a spin averaged potential is often used to simplify matters [42, 43]

V ex
ee = kBT (ln 2) exp

[

− 1

π ln 2

(

r

λee

)2
]

. (18)

One should however keep in mind that the potentials (17) and (18) do not describe systems

that are highly degenerate and strongly coupled. The combination of both effects is treated

only in an approximate way.

For most weakly degenerate plasmas, the pair distributions calculated using the exchange

potentials (17) and (18) show only small differences (except gee). These potentials result

however in slightly different screening which is magnified at the structure factors at small k.

The neglect of exchange effects can lead to significant differences both in the pair distribution

functions and in the static structure factors. Fig. 5 demonstrates this fact for the case of an

aluminum plasma that is moderately degenerate. Interestingly, even the ion-ion structure
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FIG. 6: (color online) Comparison of the results from a multi-component HNC approach using

different quantum pseudo-potentials for the conditions of recent X-ray scattering experiments [7]

on beryllium with ni =1.23×1023 cm−3, T =1.39×105 K, and Z =2.2. (a) - partial pair distributions;

(b) - structure factors.

factor Sii(k) shows marks that stem from exchange. Again, the low k-values, where differ-

ences are largest, are most relevant for the interpretation of the spectrum of x-ray scattering

in the collective regime [9].

IV. APPLICATION TO X-RAY SCATTERING

A. Description of the Scattering Signal

The scattering of x-rays, in particular Thomson and Compton scattering, is an emerging

powerful diagnostics method well-suited for dense plasmas and warm dense matter [6, 7, 9].

It exploits the fact that the intensity of the scattered light is proportional to the density-

density structure factor of the electrons. For partially ionized matter, it is convenient to

split the electrons into bound and free, where the last kind also include the electrons of the

screening cloud. Omitting internal excitations, the total electron-electron structure factor

can then be recast as [44, 45]

Stot
ee (k, ω) = |fi(k) + q(k)|2 Sii(k, ω) + ZS0

ee(k, ω) . (19)
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Here, fi(k) denotes the atomic or ionic form factor (contribution from bound electrons) and

q(k) is the density of the screening cloud in Fourier space. The first term describes the

scattering of the electrons co-moving with the ions, while the second is the free electron

response. Up to now the ion peak cannot be spectrally resolved in the experiment and can

therefore be treated statically. The contribution from the screening electrons can also be

calculated by static structure factors [45]: q(k)=
√

ZSei(k)/Sii(k). All quantities needed to

describe the ion peak are thus defined by the static structure discussed in this paper. The

experimentally relevant k vector is defined by the wave length of the probe radiation λ0 and

the scattering geometry via

k =
4π

λ0

sin(θ/2) , (20)

where θ is the scattering angle.

B. Results and Discussion

Fig. 6 shows results for the structure factor needed using different quantum pseudo-

potentials discussed in the previous section. One obtains clearly quite different results

depending on the choice for the potential. These differences occur for small to intermediate

r in the pair distribution as well as for small k in the structure factors. The last fact

highlights that the choice of the quantum potential also alters the long range screening

properties. Although the ion-ion potential is here Coulomb, this indirectly affects the ion-ion

pair distribution and structure factor. One should however keep in mind that the pseudo-

potentials used here were derived for systems with weak quantum effects. Thus, the method

of quantum potentials is quite overstretched in the case of Fig. 6 due to the highly degenerate

electrons. This becomes particularly clear considering the kinetic energy: while the HNC

approach uses Boltzmann statistics and therefore 3/2kBT , it should be replaced by the Fermi

energy for highly degenerate systems.

The influence of a different treatment for the electrons on the ions can already be seen

in the Yukawa model by using either a screening length calculated by the classical Debye

formula or the Thomas-Fermi length applicable for highly degenerate electrons. For compar-

ison, Fig. 6 displays results of such a calculation where, in accordance with the general form

(5) and the conditions of Fig. 6, an inverse screening length of κe =2.16 a−1
i was used. The

ions appear in this calculation more weakly coupled which reveals that all pseudo-potentials

15



yield less effective screening than the linear screening model.

Tables I and II quantify the differences in the predicted weight of the ion peak (first

term in Eq. (19)) for two different k values. These wave numbers correspond to a wave

length of the incident light of λ0 = 0.26 nm and scattering angles of θ = 160◦ (backward

scattering) and θ = 40◦ (forward scattering) applied to plasma conditions inferred from the

experiments reported in Refs. [7] and [9], respectively. In addition, the screening function

q(k) was calculated within classical linear response [46, 47]

q(k) =
−neβV C

ei (k)

ǫe(k, 0)
= Z

κ̄2
e

κ̄2
e + k2

, (21)

where ǫ(k, 0)=k2/(κ̄2
e + k2) and the Coulomb potential V C

ei (k) = −4πZe2/k2 has been used

in the second step. The quantities in the nominator can then be combined to the inverse of

the classical Debye length which is denoted here by κ̄e (electrons only) to mark the classical

limits. In contrast to previous remarks, the dielectric function ǫ must be also used in the

nondegenerated limit to insure the boundary condition limk→0 q(k) = Z.

The tables show once again that huge differences arise from the choice of the electron-

ion potential, especially for small k. Particularly low weights are obtained using the

Klimontovich-Kraeft potential (15) that results in a OCP-like behavior for the ions, i.e.,

very small values for Sii(0). The consideration of exchange contributions increases both

Sei(k) and Sii(k) for small k which gives rise to an overall smaller weight of the ion peak.

The consideration of two ion species changes the values slightly to higher values in both the

linear response treatment and the calculations treating electrons within the HNC scheme.

A direct comparison of the results present in tables I and II with experimental data is

unfortunately not possible since the extraction of the corresponding weights of the ion peak

from the published spectra is beyond the scope of this work. A theoretical model that uses

the KK potential yields however good agreement with the scattering intensity measured

[9]. Therefore, weights slightly less than unity can be extracted for the conditions of table

II. The KK potential is however the theoretically least justified quantum pseudo-potential

used. Accordingly, further experimental data or a full quantum description of the warm

dense matter investigated seems to be required.

16



V. CONCLUSIONS

We investigated the structural properties of dense, strongly coupled, multi-component

plasmas using classical hypernetted chain equations and numerical simulations. Both meth-

ods, which yield very similar results, are typically applied for one or two component plasmas.

By extending the approach to systems with an arbitrary number of components, we could

demonstrate the shortcomings of the OCP and Yukawa calculations. Strongly coupled plas-

mas, that consist of different chemical components and have ions with very distinct charge

states, cannot be described with such an OCP approach at all. Here, the ions with the high-

est charge state imprint their structure on the other components and a multi-component

version is absolutely necessary. This effect is less pronounced for plasmas with ions in suc-

cessive charge states. However, we find here also quantitative discrepancies between multi

and one component calculations in the strongly coupled region.

The generalization to many components allows us to study electron-ion systems treating

the electrons on the same footing than the ions. In this case, we have to take quantum effects,

which are intrinsic for the electrons, into account. Both quantum diffraction and exchange

can be approximately modeled by quantum pseudo-potentials. We tested different types

of potentials and found large differences for the predicted pair distributions and structure

factors in the warm dense matter region. Interestingly, calculations considering two electron

components in different spin states yield in the region of moderate degeneracy significantly

different results than those using a spin averaged exchange potential.

We finally applied our structural calculation to x-ray scattering in warm dense matter.

Here, the choice of the quantum potential can strongly affect the predicted height of the ion

feature which is related to the static structure factors. This is particularly pronounced in the

case of forward scattering while it is less important for backward scattering. These results

suggest that scattering under large angles is better suited for plasma diagnostics since these

results are nearly independent of the approximation applied. Due to much larger differences

between the models for smaller k values, forward scattering seems, in contrast, to be the

better approach for an experimental test of the theoretical predictions. Alternatively, the

problems originating from the quantum pseudo-potentials may be resolved by comparison

with full quantum simulations.
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TABLE I: Quantities needed to predict the height of the ion peak in the x-ray scattering signal.

The material considered is beryllium at ni = 1.23×1023cm−3, T = 1.39×105 K, and an estimated

charge state of Z̄ =2.2 which is probed at k =4.76×1010m−1 =5.97 a−1
i . The following potentials

are applied: K – Kelbg (13), D – Deutsch (14), D-ex – as D plus exchange term (18), KK –

Klimontovich-Kraeft (15). Furthermore, the linear response approximation is applied (1C - one

component, 2C - 2 components).

potential used fi(k) Sei(k) Sii(k) q(k) (fi + q)2Sii(k)

e-e e-i

D D 1.46 0.078 1.024 0.113 2.53

D-ex D 1.46 0.068 1.023 0.099 2.49

K KK 1.46 0.007 1.022 0.010 2.21

D KK 1.46 0.007 1.022 0.010 2.21

D-ex KK 1.46 0.007 1.022 0.010 2.21

lin. resp. (1C) 1.46 - 1.009 0.336 3.25

lin. resp. (2C) 1.46 - 1.016 0.336 3.28

TABLE II: Same as table I, but for a smaller wave number of k=1010 m−1 =1.25 a−1
i .

potential used fi(k) Sei(k) Sii(k) q(k) (fi + q)2Sii(k)

e-e e-i

D D 1.78 0.569 0.424 1.990 6.03

D-ex D 1.78 0.263 0.262 1.489 2.80

K KK 1.78 0.036 0.128 0.417 0.62

D KK 1.78 0.048 0.130 0.548 0.71

D-ex KK 1.78 0.036 0.130 0.411 0.62

lin. resp. (1C) 1.78 - 0.429 1.762 5.38

lin. resp. (2C) 1.78 - 0.325 1.762 4.08
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