11 research outputs found

    Indigencia, un abordaje multidisciplinar y una propuesta de intervención en la Zona Centro de Guadalajara

    Get PDF
    El trabajo se propone hacer un abordaje multidisciplinario de tipo exploratorio en el que se estudien aspectos legales, económicos, sociales, asistenciales, culturales y de difusión del fenómeno de la indigencia y de los actores que la viven y conviven con ella pensando en que este tema podría dar pie a abordajes más profundos desde la academia y otras instancias

    Observation of a New Excited Beauty Strange Baryon Decaying to Xi(-)(b)pi(+)pi(-)

    Get PDF
    The Xi(-)(b)pi(+)pi(-) invariant mass spectrum is investigated with an event sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb(-1). The ground state Xi(-)(b) is reconstructed via its decays to J/psi Xi(-) and J/psi Lambda K-. A narrow resonance, labeled Xi(b)(6100)(-), is observed at a Xi(-)(b)pi(+)pi(-) invariant mass of 6100.3 +/- 0.2(stat) +/- 0.1(syst) +/- 0.6(Xi(-)(b)) MeV, where the last uncertainty reflects the precision of the Xi(-)(b) baryon mass. The upper limit on the Xi(b)(6100)(-) natural width is determined to be 1.9 MeV at 95% confidence level. The low Xi(b)(6100)(-) signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Xi(c) baryon states, the new Xi(b)(6100)(-) resonance and its decay sequence are consistent with the orbitally excited Xi(- )(b)baryon, with spin and parity quantum numbers J(P) = 3/2(-)

    Study of dijet events with large rapidity separation in proton-proton collisions at s \sqrt{s} = 2.76 TeV

    No full text
    International audienceThe cross sections for inclusive and Mueller-Navelet dijet production are measured as a function of the rapidity separation between the jets in proton-proton collisions at s \sqrt{s} = 2.76 TeV for jets with transverse momentum pT_{T}> 35 GeV and rapidity |y| 20 GeV is introduced to improve the sensitivity to the effects of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution. The measurement is compared with the predictions of various Monte Carlo models based on leading-order and next-to-leading-order calculations including the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi leading-logarithm (LL) parton shower as well as the LL BFKL resummation.[graphic not available: see fulltext

    Strategies and performance of the CMS silicon tracker alignment during LHC Run 2

    No full text
    The strategies for and the performance of the CMS silicon tracking system alignment during the 2015–2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. Alignment scenarios are also derived for use in the simulation of the detector response. Systematic effects, related to intrinsic symmetries of the alignment task or to external constraints, are discussed and illustrated for different scenarios

    Observation of a New Excited Beauty Strange Baryon Decaying to Ξbπ+π\Xi^-_\mathrm{b} \pi^+ \pi^-

    No full text
    International audienceThe Ξbπ+π\Xi^-_\mathrm{b} \pi^+ \pi^- invariant mass spectrum is investigated with an event sample of proton-proton collisions at s=\sqrt{s} = 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb1^{-1}. The ground state Ξb\Xi^-_\mathrm{b} is reconstructed via its decays to J/ψΞ/\psi \Xi^- and J/ψΞΛ/\psi \Xi^-\LambdaK^-. A narrow resonance, labeled Ξb\Xi_\mathrm{b}(6100)^-, is observed at a Ξbπ+π\Xi^-_\mathrm{b} \pi^+ \pi^- invariant mass of 6100.3 ±\pm 0.2 (stat) ±\pm 0.1 (syst) ±\pm 0.6 (Ξb\Xi^-_\mathrm{b}) MeV, where the last uncertainty reflects the precision of the Ξb\Xi^-_\mathrm{b} baryon mass. The upper limit on the Ξb\Xi_\mathrm{b}(6100)^- natural width is determined to be 1.9 MeV at 95% confidence level. Following analogies with the established excited Ξc\Xi_\mathrm{c} baryon states, the new Ξb\Xi_\mathrm{b}(6100)^- resonance and its decay sequence are consistent with the orbitally excited Ξb\Xi^-_\mathrm{b} baryon, with spin and parity quantum numbers JP=J^P= 3/2^-

    A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H toto bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb1^{-1} collected in proton-proton collisions at s\sqrt{s} = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B \to bH and 100% B \to bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV

    A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H toto bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb1^{-1} collected in proton-proton collisions at s\sqrt{s} = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B \to bH and 100% B \to bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV

    A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H toto bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb1^{-1} collected in proton-proton collisions at s\sqrt{s} = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B \to bH and 100% B \to bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV

    A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H toto bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb1^{-1} collected in proton-proton collisions at s\sqrt{s} = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B \to bH and 100% B \to bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV
    corecore