62 research outputs found

    Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis

    Get PDF
    DNA interstrand crosslinks (ICLs) formed by antitumor agents, such as cisplatin or mitomycin C, are highly cytotoxic DNA lesions. Their repair is believed to be triggered primarily by the stalling of replication forks at ICLs in S-phase. There is, however, increasing evidence that ICL repair can also occur independently of replication. Using a reporter assay, we describe a pathway for the repair of cisplatin ICLs that depends on transcription-coupled nucleotide excision repair protein CSB, the general nucleotide excision repair factors XPA, XPF and XPG, but not the global genome nucleotide excision repair factor XPC. In this pathway, Rev1 and PolĪ¶ are involved in the error-free bypass of cisplatin ICLs. The requirement for CSB, Rev1 or PolĪ¶ is specific for the repair of ICLs, as the repair of cisplatin intrastrand crosslinks does not require these genes under identical conditions. We directly show that this pathway contributes to the removal of ICLs outside of S-phase. Finally, our studies reveal that defects in replication- and transcription-dependent pathways are additive in terms of cellular sensitivity to treatment with cisplatin or mitomycin C. We conclude that transcription- and replication-dependent pathways contribute to cellular survival following treatment with crosslinking agent

    Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified 'ultra-mild' DNA synthesis

    Get PDF
    Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified 'ultra-mild' DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of beta-mercaptoethanol) designed to remove protecting groups of commercially available 'ultra-mild' phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DN

    Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases

    Get PDF
    DNA interstrand crosslinks (ICLs), inhibit DNA metabolism by covalently linking two strands of DNA and are formed by antitumor agents such as cisplatin and nitrogen mustards. Multiple complex repair pathways of ICLs exist in humans that share translesion synthesis (TLS) past a partially processed ICL as a common step. We have generated site-specific major groove ICLs and studied the ability of Y-family polymerases and Pol Ī¶ to bypass ICLs that induce different degrees of distortion in DNA. Two main factors influenced the efficiency of ICL bypass: the length of the dsDNA flanking the ICL and the length of the crosslink bridging two bases. Our study shows that ICLs can readily be bypassed by TLS polymerases if they are appropriately processed and that the structure of the ICL influences which polymerases are able to read through i

    The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase eta

    Get PDF
    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol eta activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only aminimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.ope

    Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase Ī¶ complex

    Get PDF
    DNA polymerase Ī¶ (Pol Ī¶) and Rev1 are essential for the repair of DNA interstrand crosslink (ICL) damage. We have used yeast DNA polymerases Ī·, Ī¶ and Rev1 to study translesion synthesis (TLS) past a nitrogen mustard-based interstrand crosslink (ICL) with an 8-atom linker between the crosslinked bases. The Rev1-Pol Ī¶ complex was most efficient in complete bypass synthesis, by 2-3 fold, compared to Pol Ī¶ alone or Pol Ī·. Rev1 protein, but not its catalytic activity, was required for efficient TLS. A dCMP residue was faithfully inserted across the ICL-G by Pol Ī·, Pol Ī¶, and Rev1-Pol Ī¶. Rev1-Pol Ī¶, and particularly Pol Ī¶ alone showed a tendency to stall before the ICL, whereas Pol Ī· stalled just after insertion across the ICL. The stalling of Pol Ī· directly past the ICL is attributed to its autoinhibitory activity, caused by elongation of the short ICL-unhooked oligonucleotide (a six-mer in our study) by Pol Ī· providing a barrier to further elongation of the correct primer. No stalling by Rev1-Pol Ī¶ directly past the ICL was observed, suggesting that the proposed function of Pol Ī¶ as an extender DNA polymerase is also required for ICL repair

    Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts

    Get PDF
    Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by Aā€‰:ā€‰T to Tā€‰:ā€‰A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues

    Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity

    Get PDF
    FEN-1 and XPG are members of the FEN-1 family of structure-specific nucleases, which share a conserved active site. FEN-1 plays a central role in DNA replication, whereas XPG is involved in nucleotide excision repair (NER). Both FEN-1 and XPG are active on flap structures, but only XPG cleaves bubble substrates. The spacer region of XPG is dispensable for nuclease activity on flap substrates but is required for NER activity and for efficient processing of bubble substrates. Here, we inserted the spacer region of XPG between the nuclease domains of FEN-1 to test whether this domain would be sufficient to confer XPG-like substrate specificity and NER activity on a related nuclease. The resulting FEN-1-XPG hybrid protein is active on flap and, albeit at low levels, on bubble substrates. Like FEN-1, the activity of FEN-1-XPG was stimulated by a double-flap substrate containing a 1-nt 3ā€² flap, whereas XPG does not show this substrate preference. Although no NER activity was detected in vitro, the FEN-1-XPG hybrid displays substantial NER activity in vivo. Hence, insertion of the XPG spacer region into FEN-1 results in a hybrid protein with biochemical properties reminiscent of both nucleases, including partial NER activity

    A modified thymine for the synthesis of site-specific thymine-guanine DNA interstrand crosslinks

    Get PDF
    DNA interstrand crosslinks (ICLs) are highly cytotoxic lesions formed by a variety of important anti-tumor agents. Despite the clinical importance of ICLs, the mechanisms by which these lesions are repaired in mammalian cells have so far remained elusive. One of the obstacles in the study of ICL repair has been the limited availability of suitable methods for the synthesis of defined site-specific ICLs. We report here the synthesis of a site-specific ICL containing an ethylene-bridged G-T base pair based on the incorporation of a crosslink precursor containing a selectively reactive group on one strand using solid-phase synthesis. 3-(2-chloroethyl)thymidine was incorporated into oligonucleotides and underwent ICL formation upon annealing to a complementary strand by reacting with the base opposite to the modified T residue. A strong preference for ICL formation with a G residue opposite the reactive T was observed. Detailed characterization of the reaction product revealed that the alkylation reaction occurred with the O-6 group of G and a mechanism accounting for this preference is proposed. These G-T crosslinks introduced here will be useful for studies of ICL repair

    Single-molecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B

    Get PDF
    DNA repair is critical for maintaining genomic integrity. Finding DNA lesions initiates the entire repair process. In human nucleotide excision repair (NER), XPC-RAD23B recognizes DNA lesions and recruits downstream factors. Although previous studies revealed the molecular features of damage identification by the yeast orthologs Rad4-Rad23, the dynamic mechanisms by which human XPC-RAD23B recognizes DNA defects have remained elusive. Here, we directly visualized the motion of XPC-RAD23B on undamaged and lesion-containing DNA using high-throughput single-molecule imaging. We observed three types of one-dimensional motion of XPC-RAD23B along DNA: diffusive, immobile and constrained. We found that consecutive AT-tracks led to increase in proteins with constrained motion. The diffusion coefficient dramatically increased according to ionic strength, suggesting that XPC-RAD23B diffuses along DNA via hopping, allowing XPC-RAD23B to bypass protein obstacles during the search for DNA damage. We also examined how XPC-RAD23B identifies cyclobutane pyrimidine dimers (CPDs) during diffusion. XPC-RAD23B makes futile attempts to bind to CPDs, consistent with low CPD recognition efficiency. Moreover, XPC-RAD23B binds CPDs in biphasic states, stable for lesion recognition and transient for lesion interrogation. Taken together, our results provide new insight into how XPC-RAD23B searches for DNA lesions in billions of base pairs in human genome

    Detection of oxaliplatin- and cisplatin-DNA lesions requires different global genome repair mechanisms that affect their clinical efficacy

    Get PDF
    The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.</p
    • ā€¦
    corecore