38 research outputs found

    Evaluation of allelic forms of the erythrocyte binding antigen 175 (EBA-175) in Plasmodium falciparum field isolates from Brazilian endemic area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Plasmodium falciparum </it>Erythrocyte Binding Antigen-175 (EBA-175) is an antigen considered to be one of the leading malaria vaccine candidates. EBA-175 mediates sialic acid-dependent binding to glycophorin A on the erythrocytes playing a crucial role during invasion of the <it>P. falciparum </it>in the host cell. Dimorphic allele segments, termed C-fragment and F-fragment, have been found in high endemicity malaria areas and associations between the dimorphism and severe malaria have been described. In this study, the genetic dimorphism of EBA-175 was evaluated in <it>P. falciparum </it>field isolates from Brazilian malaria endemic area.</p> <p>Methods</p> <p>The study was carried out in rural villages situated near Porto Velho, Rondonia State in the Brazilian Amazon in three time points between 1993 and 2008. The allelic dimorphism of the EBA-175 was analysed by Nested PCR.</p> <p>Results</p> <p>The classical allelic dimorphism of the EBA-175 was identified in the studied area. Overall, C-fragment was amplified in a higher frequency than F-fragment. The same was observed in the three time points where C-fragment was observed in a higher frequency than F-fragment. Single infections (one fragment amplified) were more frequent than mixed infection (two fragments amplified).</p> <p>Conclusions</p> <p>These findings confirm the dimorphism of EBA175, since only the two types of fragments were amplified, C-fragment and F-fragment. Also, the results show the remarkable predominance of CAMP allele in the studied area. The comparative analysis in three time points indicates that the allelic dimorphism of the EBA-175 is stable over time.</p

    EPIC: Efficient Private Image Classification (or: Learning from the Masters)

    Get PDF
    Outsourcing an image classification task raises privacy concerns, both from the image provider\u27s perspective, who wishes to keep their images confidential, and from the classification algorithm provider\u27s perspective, who wishes to protect the intellectual property of their classifier. We propose EPIC, an efficient private image classification system based on support vector machine (SVM) learning, which is secure against malicious adversaries. The novelty of EPIC is that it builds upon transfer learning techniques known from the Machine Learning (ML) literature and minimizes the load on the privacy-preserving part. Our solution is based on Secure Multiparty Computation (MPC), it is 34 times faster than Gazelle (USENIX 2018) --the state-of-the-art in private image classification-- and it improves the total communication cost by 50 times, while achieving a 7\% higher accuracy on CIFAR-10 dataset. When benchmarked for performance, while maintaining the same CIFAR-10 accuracy as Gazelle, EPIC is 700 times faster and the communication cost is reduced by 500 times

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Development and application of microwave radiometric techniques for modeling satellite-earth propagation at V and W band

    No full text
    Sun-tracking microwave (ST-MW) radiometry is a ground-based technique where the Sun is used as a beacon source to infer the atmospheric path attenuation in all-weather conditions. ST-MW radiometry shows an appealing potential for overcoming the difficulties to perform satellite-to-Earth radiopropagation experiments in the unexplored millimeter-wave and submillimeter-wave frequency region, especially where experimental data from beacon receivers are not available. The theoretical framework, the ad hoc procedures and data processing will be presented, together with the estimate of the overall error budget. The applications and challenges during field deployments, such as the recent WRad campaign in Italy based on ST-MW data analysis, funded by ESA and carried out together with AFRL (NY, USA), will be discussed
    corecore